Divulgación

2×1 en pulsos láser ultracortos

En las últimas décadas, los pulsos láser ultracortos han revolucionado nuestra manera de estudiar el mundo microscópico a través de la interacción de la luz coherente con la materia. La generación y manipulación de estos campos electromagnéticos efímeros nos permite acceder a los fenómenos atómicos más rápidos de la naturaleza, que suceden en la escala de tiempo de los femto a los attosegundos (10-15-10-18 s). El rápido avance de la tecnología láser ha permitido, en los últimos años, sintetizar pulsos infrarrojos con duraciones sub-ciclo, en los que la estructura más intensa del campo eléctrico de la luz apenas tiene tiempo de completar una oscilación a su frecuencia central. Estos pulsos proporcionan una herramienta única para explorar el movimiento de los electrones en átomos y moléculas, pero su generación todavía está limitada a montajes extremadamente costosos y complejos.

Recientemente, demostramos que estos pulsos sub-ciclo pueden obtenerse de forma mucho más sencilla en sistemas rutinarios basados en la propagación de la luz a través de fibras huecas rellenas de gas con un gradiente de presión decreciente. Esta propuesta se basa en un fenómeno sorprendente de la óptica no lineal, conocido como auto-compresión solitónica, por el que un pulso láser intenso puede, por sí solo, ensanchar y organizar simultáneamente su espectro de frecuencias, reduciendo casi al límite su duración. Siguiendo unas reglas de escala para diseñar los parámetros de la fibra y del pulso de entrada, esta técnica permite generar pulsos sub-ciclo infrarrojos de muy buena calidad.

No contentos con alcanzar duraciones de apenas un femtosegundo, en nuestro último trabajo, realizado en colaboración con investigadores del Politecnico di Milano y la Heriot-Watt University, hemos explorado la aplicación de estos campos sub-ciclo para generar pulsos láser aún más cortos en el régimen de los attosegundos. Para ello, hemos aprovechado el fenómeno de generación de armónicos de orden alto, que surge de la interacción de un pulso infrarrojo intenso con los átomos de un gas. Cuando la interacción se realiza con un láser convencional, este proceso funciona como una cadena de producción de pulsos de attosegundo en el ultravioleta extremo, dando lugar a una serie de destellos de luz que se suceden a intervalos de tiempo regulares. Sin embargo, si la interacción la realiza uno de nuestros anteriores pulsos sub-ciclo, el proceso de generación de armónicos se confina de manera natural a un único evento, lo que resulta en la emisión directa de un pulso de attosegundo aislado. Estos pulsos ultravioletas solitarios constituyen una herramienta muy codiciada en aplicaciones de ciencia ultrarrápida donde se necesita un control muy preciso y una gran resolución temporal.

Así, nuestro estudio abre las puertas a una nueva generación de sistemas compactos basados en fibras en los que, partiendo de un pulso láser infrarrojo estándar, se combinan por primera vez su auto-compresión extrema hasta el régimen sub-ciclo y su aplicación directa para generar pulsos de attosegundo aislados en el ultravioleta extremo.

Más información en:

  1. F. Galán, J. Serrano, E. C. Jarque, R. Borrego-Varillas, M. Lucchini, M. Reduzzi, M. Nisoli, C. Brahms, J. C. Travers, C. Hernández-García, and J. San Roman, “Robust isolated attosecond pulse generation with self-compressed sub-cycle drivers from hollow capillary fibers,” ACS Photonics 11(4), 1673-1683 (2024).

https://doi.org/10.1021/acsphotonics.3c01897

No comments
admin2×1 en pulsos láser ultracortos

VI Concurso Fotográfico «Día de la luz»

Con motivo de la proclamación del 16 de mayo como «Dia Internacional de la Luz y las Tecnologías Basadas en Luz» por la Organización de Naciones Unidas, el Máster Universitario en Fisica y Tecnología de los Láseres convoca la VI edición del Concurso Fotografico «Dia de la Luz». 

En la organización del concurso y formación del jurado participan:

 

El concurso esta abierto a estudiantes de Grado, Máster o Doctorado,  profesorado y miembros de la comunidad universitaria de la Universidad de Salamanca y de la Universidad de Valladolid, así como egresados del Máster en Física y Tecnología de los Láseres que no formen parte del jurado

El plazo de participación esta abierto hasta el día 31 de mayo. Cada participante puede enviar hasta dos fotografías a cada una de las categorías establecidas: 

  • Tecnologias de la luz y Fenômenos Opticos
  • El Láser

Se otorgarán 4 premios: 

  • Primer premio en la categoría Tecnologías de la Luz y Fenómenos Ópticos: 200 euros.
  • Segundo premio en la categoría Tecnologías de la Luz y Fenómenos Ópticos: 100 euros
  • Primer premio en la categoría El Láser: 200 euros
  • Segundo premio en la categoría El Láser: 100 euros

Además, aquellos premiados que sean estudiantes de Grado, Máster o Doctorado recibirán un año de suscripción gratuita a la Real Sociedad Española de Física con acceso on-line a la Revista de Física. Las fotografías premiadas serán publicadas en la revista Óptica Pura y Aplicada de la Sociedad Española de Óptica (SEDOPTICA).

Las bases completas del concurso están disponibles en la web del Máster en Física y Tecnología de los Láseres (laser.usal.es/posgrado)

LogosConcursoFoto2024
No comments
adminVI Concurso Fotográfico «Día de la luz»

Investigadores del Institute of Ion Beam Physics and Materials Research visitan ALF-USAL

Los investigadores Rang Li y Chi Pang, del Institute of Ion Beam Physics and Materials Research (Helmholtz-Zentrum Dresden-Rossendorf) realizaron la semana pasada una campaña de experimentación en el Laboratorio Láser de la USAL.

Estos investigadores trabajan en el desarrollo de nuevos materiales avanzados para aplicaciones en fotónica como las microcavidades de nanomembrana.

Utilizan diversos dispositivos experimentales basados en láseres de pulsos ultracortos desarrollados por los investigadores del grupo ALF Carolina Romero, Ignacio López, Íñigo Sola y Javier Rodríguez

No comments
adminInvestigadores del Institute of Ion Beam Physics and Materials Research visitan ALF-USAL

Investigadores del grupo ALF – USAL participan en el congreso HILAS

Investigadores del grupo ALF de la USAL, incluyendo a Carlos Hernández García, Marina Fernández Galán y Rodrigo Hernández Martín, participaron en el congreso de High-Intensity Lasers and High-Field Phenomena (HILAS), que tuvo lugar del 12 al 14 de marzo en Viena.

HILAS sirve como una plataforma destacada para que científicos e investigadores exploren avances de vanguardia y descubrimientos en el campo de los láseres de alta intensidad y los fenómenos de campo alto. El congreso proporciona un espacio para discusiones, presentaciones y colaboraciones entre expertos en diversas disciplinas, incluyendo física, óptica, ingeniería y ciencia de materiales. A través de discursos principales, sesiones de paneles y talleres, HILAS facilita el intercambio de conocimientos y fomenta la innovación en este campo en constante evolución.

Se han presentado los siguientes trabajos:

  • Simulating Macroscopic High-order Harmonic Generation Driven by Structured Laser Beams Using Artificial Intelligence, Carlos Hernandez-Garcia; Universidad de Salamanca, Spain.
    • Employing artificial intelligence, we integrate microscopic quantum computations based on the time dependent Schrödinger equation with macroscopic physics, to unveil hidden signatures in the ultrafast electronic dynamics of high-order harmonic generation by structured laser beams.
  • Compact Generation of Isolated Attosecond Pulses Driven by Self-compressed Subcycle Waveforms, Marina F. Galán1, Javier Serrano1, Enrique Conejero Jarque1, Rocío Borrego-Varillas2, Matteo Lucchini3, Maurizio Reduzzi3 , Mauro Nisoli3 , Christian Brahms4, John C. Travers4, Carlos Hernandez-Garcia1, Julio San Roman1; 1 Universidad de Salamanca, Spain; 2 IFN-CNR, Italy; 3 Politecnico di Milano, Italy; 4 Heriot-Watt University, United Kingdom.

We theoretically demonstrate a compact and robust scheme for the direct generation of extreme ultraviolet isolated attosecond pulses from high-order harmonics driven by self-compressed subcycle waveforms produced in a gas-filled hollow capillary fiber.

  • Generation of high-order harmonic spatiotemporal optical vortices, Rodrigo Martín Hernández1,2, Guan Gui3, Luis Plaja1,2, Henry K. Kapteyn3, Margaret M. Murnane3, Miguel A. Porras4, Chen-Ting Liao3,5, Carlos Hernandez-Garcia1,2; 1 Grupo de Investigación en Aplicaciones del Láser y Fotónica. Departamento de Física Aplicada, Universidad de Salamanca, Spain; 2 Unidad de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Spain; 3 JILA and Department of Physics, University of Colorado and NIST, USA; 4 Grupo de Sistemas Complejos, ETSIME, Universidad Politécnica de Madrid, Spain; 5 Department of Physics, Indiana University, USA.

We theoretically and experimentally demonstrate the generation of high-topological charge, extreme-ultraviolet (EUV) spatiotemporal optical vortices (STOV) from high-order harmonic generation. EUV-STOVs are unique structured light tools for exploring ultrafast topological laser-matter interactions.

No comments
adminInvestigadores del grupo ALF – USAL participan en el congreso HILAS

CSI Zamora-Salamanca: reconstruyendo pulsos vectoriales con amplitude swing

Caracterizar temporalmente pulsos láser ultracortos (en la escala del femtosegundo, i.e., 10-15 segundos) es como reconstruir la escena de un crimen: los pulsos de luz son tan rápidos que no podemos pillarlos in fraganti, sólo podemos reconstruirlos a partir de las pistas que nos dejan.

Típicamente se trabaja con pulsos escalares polarizados linealmente, en los que el estado de polarización es constante en el tiempo (la polarización hace referencia a la trayectoria que describe la luz en el plano transversal). Para identificar a este tipo de pulsos, se necesita conocer su amplitud o intensidad y su fase. Existe otro tipo de pulsos en los que la polarización varía temporalmente, conocidos como pulsos vectoriales. Éstos son más complejos que los escalares, y necesitamos conocer la amplitud y fase de sus dos componentes, y la fase relativa entre ellas. Si identificar un pulso escalar es equivalente a identificar a un criminal, conocer un pulso vectorial sería equivalente a conocer a una banda compuesta por dos criminales, y, además, la relación que existe entre ellos.

Un tipo de técnicas de caracterización se basan en medir el espectro de una señal no lineal mientras el pulso sufre algún tipo de modificación. En la técnica amplitude swing (a-swing), desarrollada por investigadores del grupo ALF, se generan dos réplicas del pulso a medir, retardadas temporalmente entre sí, y se mide el espectro de segundo armónico (se dobla la frecuencia) para distintas amplitudes relativas de dichas réplicas. Así, se obtiene una traza bidimensional (un mapa en el que el color representa la intensidad), que es como una huella dactilar del pulso. En algunas técnicas se dan ambigüedades, es decir, dos pulsos distintos generan la misma traza, como si dos personas tuvieran la misma huella dactilar. Mediante algoritmos, se pueden extraer la información del pulso que genera la traza (nuestra pista).

La mayoría de las técnicas sólo permiten caracterizar pulsos escalares. Si queremos reconstruir un pulso vectorial con una de estas técnicas necesitamos varias trazas, es decir, varias huellas. Por el contrario, una única traza de a-swing contiene la información necesaria para identificar un pulso vectorial. Además, estas trazas se obtienen con un montaje en línea, compacto y versátil.

En este trabajo, analizamos las trazas de a-swing analítica y numéricamente para estudiar cómo se codifica la información de los pulsos vectoriales, y desarrollamos una estrategia para extraerla. Ésta se aplica a trazas simuladas y experimentales, demostrando que se puede reconstruir un pulso vectorial a partir de su traza a-swing. Si no quieren ser cazados, deberán evitar dejar este tipo de huellas…

Más información en: 

Cristian Barbero, Benjamín Alonso, and Íñigo J. Sola, «Characterization of ultrashort vector pulses from a single amplitude swing measurement,» Opt. Express 32, 10862-10873 (2024) https://doi.org/10.1364/OE.515198
No comments
adminCSI Zamora-Salamanca: reconstruyendo pulsos vectoriales con amplitude swing

Attociencia

Los destellos de luz más rápidos que podemos producir de forma controlada no duran mas que unas cuantas trillonésimas de segundo o, lo que es lo mismo, unos cuantos attosegundos. Con ellos podemos observar cómo se desarrollan los procesos electrónicos en los átomos y moléculas. La attofísica ha emergido como un nuevo ámbito en el estudio de la naturaleza, pero ¿cómo hemos llegado hasta aquí? Este artículo narra el esfuerzo colectivo para llegar a producir pulsos de luz de duraciones progresivamente más cortas, merecedor del Premio Nobel de Física del año 2023. Una apasionante historia jalonada de hitos, cambios de paradigma e inspiración que nos proporciona un nuevo relato sobre el apasionante desarrollo del progreso científico. 

Más información en:
L. Plaja, «Attociencia», Revista Española de Física 37-4, 49 (2023) 

No comments
adminAttociencia

Desencadenando dinámicas magnéticas ultrarrápidas usando luz estructurada

En las últimas décadas ha surgido un gran interés en la posibilidad de controlar las propiedades magnéticas de muestras materiales en tamaños nanométricos, con el objetivo primordial de desarrollar memorias de alta densidad, ultrarrápidas y de bajo impacto energético. Desde finales de la década de los 90 se ha estudiado ampliamente la posibilidad de controlar, y específicamente de desmagnetizar, muestras magnéticas empleando pulsos láser en el rango de femtosegundos. Sin embargo, los tiempos característicos se ven limitados por los efectos térmicos, imponiendo restricciones al tiempo necesario para lograr la dinámica deseada.

Recientemente hemos estudiado la posibilidad de inducir un cambio (switching) en la magnetización usando exclusivamente un campo magnético polarizado circularmente. Este enfoque se basa en generar una dinámica no lineal en la magnetización inducida por un campo magnético circular, eludiendo las limitaciones impuestas por los efectos termodinámicos y abriendo la posibilidad de obtener efectos dinámicos en la magnetización en regímenes sub-femtosegundo. 

La obtención de un campo magnético circular ultrarrápido no es trivial, aunque gracias al gran zoo que componen los haces estructurados es, hoy en día, factible. Gracias a los denominados haces vectoriales, y en concreto a los que se encuentran polarizados acimutalmente, es posible obtener distribuciones de campo magnético aislado. Estos intrigantes haces presentan una estructura de intensidad en forma de anillo, anulándose el campo eléctrico en el centro de la distribución. Asombrosamente, en esta región espacial existe una contribución del campo magnético polarizado longitudinalmente, localmente aislado de la distribución del campo eléctrico. Empleando dos haces vectoriales polarizados acimutalmente y propagándose en una configuración no colineal, estando debidamente desfasados, en la región de intersección es posible generar dicho campo magnético circularmente polarizado en un espacio del tamaño de la muestra, región donde se podría estudiar esta dinámica magnética ultrarrápida y no lineal. 

Una vez más se demuestra cómo la luz estructurada se erige en una autentica navaja suiza para el estudio y control de todo tipo de procesos y en un amplio abanico de ámbitos del mundo de la física. 

Mas información en:

Sánchez-Tejerina, L., Martín-Hernández, R., Yanes, R., Plaja, L., López-Díaz, L., \& Hernández-García, C. (2023). All-optical nonlinear chiral ultrafast magnetization dynamics driven by circularly polarized magnetic fields. High Power Laser Science and Engineering, 11, E82. doi: 10.1017/hpl.2023.71
No comments
adminDesencadenando dinámicas magnéticas ultrarrápidas usando luz estructurada

Nuevo proyecto de investigación: SpecX

Ya ha comenzado el nuevo proyecto de investigación SpecX (Schemes for the generation of attosecond x-ray special beams using high-order harmonic generation from macroscopic targets) del que son investigadores principales Julio San Román y Carlos Hernández Garcia.

En el proyecto SpecX se pretende avanzar en el manejo macroscópico de los haces de luz ultrarrápidos, desde el régimen de infrarrojo/femtosegundo hasta el de rayos X/attosegundo, con especial énfasis en el estudio de campos topológicos complejos. Para ello se requieren de códigos de simulación avanzados ya que los mecanismos para generar pulsos láser tan breves (la postcompresión no lineal de pulsos láser o la generación de armónicos de orden alto) combinan física microscópica y macroscópica, lo que supone un gran reto.

Para ello se han definido los siguientes objetivos:

  • explotar estrategias computacionales de alto rendimiento que hagan uso de la inteligencia artificial para acceder a estos nuevos escenarios de óptica no lineal extrema.
  • Diseñar los pulsos ultrarrápidos estructurados en el régimen infrarrojo/femtosegundo a través de diferentes esquemas propagación no lineal, como el uso de fibras de núcleo hueco y de cristal fotónico, y celdas multipaso.
  • Explorar nuevos esquemas del proceso de generación de armónicos de orden alto en el regiment de rayos X y attosegundo, como sólidos cristalinos irradiados por campos
  • explorar la generación de armónicos de orden alto con pulsos láser post-comprimidos en regímenes combinados
  • motivar nuevas propuestas experimentales para la generación de campos estructurados de rayos X en el régimen de los attosegundos,

El proyecto SpecX se enmarca dentro de la convocatoria Proyectos de Generación de conocimiento en el marco del Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023. Tiene un duración de tres años y ha recibido una financiación de 127.500 € proveniente del Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación y co-financiado por el Fondo Europeo de Desarrollo Regional (FEDER).

No comments
adminNuevo proyecto de investigación: SpecX

Creación de la Unidad de Excelencia LUMES

El pasado mes de junio se creó la Unidad de Excelencia en LUz y Materia EStructuradas LUMES.

La creación de la Unidad de Excelencia en LUz y Materia EStructuradas representa un paso adelante en la consolidación de la Universidad de Salamanca como referente internacional en la comprensión y aplicación de las interacciones entre la luz y la materia en la escala ultrarrápida y nanométrica. Mediante la colaboración interdisciplinaria y la formación de jóvenes investigadores, esta Unidad se posicionará como un líder internacional en el desarrollo de tecnologías aplicaciones de la luz láser estructurada al estudio de nuevos materiales. Se espera que los avances científicos y tecnológicos obtenidos impulsen la innovación en campos como la fotónica, la optoelectrónica, la nanotecnología y la óptica cuántica, ámbitos con un impacto transversal en múltiples disciplinas de la ciencia.

La Unidad de Excelencia LUMES, abordará diversas temáticas de vanguardia en los ámbitos de la óptica ultrarrápida y no lineal, y la ciencia de materiales, incluyendo el desarrollo de láseres ultrarrápidos estructurados espaciotemporalmente en un amplio rango espectral (desde THz hasta rayos X); el estudio de las propiedades electrónicas, ópticas y magnéticas de materiales 2D a nivel cuántico y sus heteroestructuras van der Waals asociadas; la interacción de estos materiales con luz estructurada ultrarrápida; el procesado de materiales mediante láseres ultraintensos; y el estudio de la dinámica ultrarrápida en materiales magnéticos excitados con pulsos láser estructurados, entre otros.

La Unidad de Excelencia LUMES está formada por 8 investigadores garantes y un total de 32 investigadores doctores, con adscripción en el Departamento de Física Aplicada de la USAL, el Centro de Láseres Pulsados, y el Departamento de Ingeniería Mecánica de la USAL. La unidad estará dirigida por Carlos Hernández García.

No comments
adminCreación de la Unidad de Excelencia LUMES

Generación de fisuras en materiales con pulsos ultracortos: estándar para ensayos de resistencia a fractura

Este trabajo estudia la resistencia al crecimiento de fisuras en Zirconia Tetragonal Policristalina dopada con Ytrio (3 mol% 3YTZP), material obtenido mediante sinterizado por plasma (SPS) que contiene dos tipos de nanomateriales a base de grafeno (GBN): nanoplatelets de grafeno obtenidas por exfoliación(e-GNP) y óxido de grafeno reducido (rGO). La resistencia al crecimiento de grietas de estos compuestos se evalúa por medio del comportamiento de su curva R, determinado mediante ensayos de flexión en tres puntos de probetas fisuradas con extremo en “V” (SEVNB), en dos orientaciones diferentes de las muestras: con la dirección de la grieta perpendicular o paralela al eje de presión durante la sinterización SPS. Las fisuras agudas fueron obtenidas mediante ablación con láser de pulsos ultracortos (UPLA). Los métodos de conformidad basados en técnicas ópticas para evaluar la longitud de la fisura se comparan en base a los resultados experimentales de la curva R en compuestos con 2,5 vol% rGO obtenida en orientación perpendicular. Además, se evalúa la activación de los mecanismos de refuerzo del material mediante la inspección de la superficie de fractura por microscopia electrónica de barrido y un análisis de conformidad. Se demuestra que el método de conformidad indirecta es pertinente y fiable para calcular la curva R de compuestos 3YTZP/GBN. También se evalúa el efecto del tipo y contenido de GBN en la resistencia al crecimiento de grietas en los compuestos.

Mas información en el artículo:

López-Pernía, C., Muñoz-Ferreiro, C., Prada-Rodrigo, J., Moreno, P., Reveron, H., Chevalier, J., Morales-Rodríguez, A., Poyato, R., & Gallardo-López, Á. (2023). R-curve evaluation of 3YTZP/graphene composites by indirect compliance method. Journal of the European Ceramic Society, 43(8), 3486-3497. https://doi.org/10.1016/j.jeurceramsoc.2023.02.002
No comments
adminGeneración de fisuras en materiales con pulsos ultracortos: estándar para ensayos de resistencia a fractura