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providing single-atom and 3D TDSE calculations; Cruz Méndez, Íñigo Sola
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Introduction

During more than two decades, the field of ultrafast intense laser science has boosted our

understanding of matter subjected to strong laser fields. Unlike other non-perturbative

fields of physics, the worldwide availability of intense laser technology has provided a

fruitful interplay between theory and experiments on a daily basis. The present work

is a clear example of this interplay.

Intense electromagnetic radiation induces a strong non-linear response in matter.

The atomic electrons acquire energy from the driving laser, which can be subsequently

released in the form of high frequency coherent radiation, in a process known as high-

order harmonic generation (HHG). The lack of conventional lasers at these high frequen-

cies drives the technological interest of HHG as a basis for coherent short wavelength

sources. Until very recently, intense laser technology was limited to near-infrared wave-

lengths (around 800 nm), consequently, the harmonic conversion was limited to the

far ultraviolet (XUV). Nowadays, thanks to the development of parametric conversion

techniques, the current limit falls in the soft X-rays region.

However, it was early recognized that the potential applications of HHG extend

beyond the obvious applications of coherent high-frequency radiation. In the spectral

region near the cut-off frequency, the spectrum has the form of a comb of harmonics

with similar intensities and, most interestingly, with a smooth spectral phase distri-

bution. Therefore, after filtering the low-frequency spectrum, the resulting radiation

corresponds to a train of ultrashort XUV pulses, with typical durations of hundreds

of attoseconds (1 as=10−18 s), and spaced regularly every half of the driving laser pe-

riod. After their experimental confirmation, these are considered the shortest bursts

of coherent radiation ever created. This technology is in his birth, but already has

demonstrated multiple applications in the time resolution of the ultrafast (attosecond)

dynamics of physical, chemical and biological systems.
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0. INTRODUCTION

The aim of this thesis is to make an original contribution to this field. The conduct-

ing line followed in this study consists on developing theoretical methods to compare

directly with the experiments. This strategy is twofold. First of all, theory is used to

understand the experimental results. For that purpose we have make our own experi-

ments (under the guidance of Dr. Íñigo J. Sola) to directly compare our simulations,

but we have also collaborated with two experimental groups to compare with their

results. Secondly, theory is applied to predict new physics and to determine some

direction towards which experiments could be done.

The starting point of this thesis is the single-atom HHG calculations, developed

previously at the University of Salamanca, and explained here along chapter 1. Hence,

our first objective was to implement a propagation scheme for the high-order harmon-

ics, making the theory comparable to the experiments. For this, we have implemented

a novel propagation technique based on the discrete dipole approximation. This tech-

nique and the fundamentals for understanding high-order harmonic propagation are

developed in chapter 2. Our novel method was published in Physical Review A 82,

033432-1-11 (2010).

In chapter 3 we study the propagation of high-order harmonics from near-IR fields in

rare gases. As a first test, we have analyzed theoretically and experimentally the change

of the phase-matching conditions when moving the gas jet along the propagation axis.

Once our method was validated experimentally, we proposed a route to obtain narrower

attosecond pulses by detecting them at a certain angle form the propagation axis,

published in Journal of Physics B: At. Mol. Opt. Phys. 45, 074021 (2012). Afterwards,

we present a study of the transversal coherence length, by comparing our theoretical

analysis with our experiments, in a work that was recently submitted to Physical Review

A, (2013). Finally, we have implemented a semi-infinite gas cell geometry in order

to explain the experiments carried by M. Kovačev’s group at Universität Hannover

(Germany). The joint work was recently submitted to Pyhsical Review A, (2013).

In chapter 4 we have implemented our method to obtain ultra high-order harmon-

ics driven by mid-IR lasers, in collaboration with the theoretical group of A. Becker

and A. Jaron-Becker at JILA, University of Colorado (USA). The main result was the

demonstration of the temporal coherence of the keV X-rays obtained by the experi-

mental group of M. Murnane and H. Kapteyn at JILA, University of Colorado (USA),

that led a joint collaboration with Technical University of Vienna (Austria), Cornell

xiv

http://pra.aps.org/abstract/PRA/v82/i3/e033432
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University (USA) and us. The result was published in Science 336, 1287 (2012). In

further exploration of the X-ray bursts driven by mid-IR laser sources, we have derived

a route for obtaining waveforms in the zeptosecond regime (1 zs=10−21 s). This work,

which is also a collaboration with the theoretical and experimental groups at JILA, has

been submitted to Physical Review Letters, (2013).
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1

High-Order Harmonic and

Attosecond Pulse Generation

The refinement of mode-locking techniques [1, 2] and the development of chirped-pulse

amplification [3] opened in the late 1980s the new frontier of high energy laser-matter

interaction. Intense fields have also, and quite unexpectedly, extended the limits of

ultrashort laser pulses to durations below the femtosecond barrier. Even though it is

presently at an early stage of development, attosecond metrology has revolutionized

physics, giving experimental evidences to fundamental questions on how ionization,

molecular charge transfer and other phenomena take place.

This chapter is aimed as a fundamental introduction to strong field phenomena,

with special emphasis in those aspects relevant with high-order harmonic generation

(HHG) and attosecond pulse production. We have divided it in three sections. First

of all we describe some fundamentals of HHG. After a small historical review, we shall

introduce the different possible nonlinear ionization processes, and the classical model

of HHG. Section 1.1 will conclude with the analysis of attosecond pulse generation

from the HHG spectrum. In section 1.2 we will turn into the quantum description

of HHG, describing the Strong-Field Approximation (SFA) approach and the saddle

point approximation. Finally, in section 1.3 we will describe the extended SFA theory

(SFA+), which was developed previously in our group and that has been used along

this thesis to compute the single-atom HHG.

1



1. HIGH-ORDER HARMONIC AND ATTOSECOND PULSE
GENERATION

1.1 Fundamentals of High-Order Harmonic Generation

When matter interacts with sufficiently intense fields, its dynamics becomes non-linear.

As a result, the excited charges (mainly electrons) radiate at frequencies not contained

in the driving field. If the interaction extends over many cycles, interference leads

to the emission of radiation at integer multiples of the driving field frequency, known

as harmonics. The radiated spectrum is, therefore, composed of a comb of equally

spaced peaks. Harmonic generation with ultraintense fields is characterized by the

abnormal the extension of the spectra towards short wavelengths. In addition, a second

and equally relevant characteristic of strong-field harmonic generation is the phase

locking of the higher harmonics, which leads to the generation of attosecond pulses.

Reviews of high-order harmonic generation and attosecond physics can be found in

[4, 5, 6, 7, 8, 9, 10].

1.1.1 A brief history of High-Order Harmonic Generation

One of the major challenges since the invention of the laser in 1960 [11] has been to ex-

tend coherent radiation to the extreme regions of the optical electromagnetic spectrum,

in particular, at higher frequencies. For that purpose, harmonic generation offers a di-

rect route. The first experimental evidence of harmonic generation was demonstrated

by Franken et al. in 1961 [12]. In this pioneering work, a ruby laser with wavelength

λ = 694 nm was aimed to generate its second harmonic (347 nm) in a quartz crystal.

As a non-linear phenomenon, the quest for the highest harmonic orders is closely linked

to the development of laser sources of high intensity. Non-perturbative harmonics, i.e.

those whose efficiency does not decrease exponentially with their order, were reported

in the late 1980s [13, 14], using krypton-fluoride (λ = 248 nm) and neodymium-glass

(λ = 1064 nm) lasers respectively. Harmonics with orders greater than the 109th were

observed very early for incident wavelengths in the near infrared range using neon as

a target [15]. At the very beginning, this behavior was attributed to multiphoton ex-

citation of atomic subshells, but later, a nice classical interpretation was proposed by

Corkum, relating the harmonic generation with ionization in the so-called three step

model [16].

The most relevant aspects of high-order harmonic generation and propagation were

established during the 1990s, following intensive experimental and theoretical activities.

2



1.1 Fundamentals of High-Order Harmonic Generation

The close interplay between theory and experiments has boosted the development of

the field. A particularly relevant case is the discovery of the natural phase locking of

the highest harmonics, which was predicted theoretically almost a decade earlier than

found experimentally. This phase locking conveys the production of high-frequency

radiation in the form of coherent sub-femtosecond pulses [17]. It was not until 2001,

when two different groups demonstrated experimentally the first evidence of attosecond

pulse generation (1 as = 10−18 s) [18, 19]. The new era of attosecond physics was born.

The development and refining of experimental techniques has gradually extended

the limits of harmonic production and attosecond pulse generation. For instance, we

have been giving theoretical support to the experimental demonstration of ultra-high

harmonic generation above the 5000th order [20], extending its coherent behavior from

the vacuum ultraviolet to the soft X-ray region (< 1.6 keV). In addition, a new record

for the shortest coherent pulses (67 attoseconds) has been very recently reported [21].

1.1.2 Strong-field ionization

Atomic photoionization is a phenomenon that has drawn physicists’ attention for almost

a century, and which is still very much alive. After being crucial for the introduction

and acceptance of quantum theory, it is still nowadays an extraordinary tool to unveil

and characterize the details of laser-matter interaction.

The ionization of a quantum system is nonlinear when the condition !ω0 < Ip

is fulfilled, where ω0 is the frequency of the incident radiation and Ip is the atomic

ionization potential, i.e. the energy necessary to extract the most energetic bound

electron of the system [22]. Although this process violates the earliest conception of

the photoelectric effect [23], the possibility of a simultaneous absorption of various

electromagnetic quanta was proposed by Göppert-Mayer in 1931 [24].

Multiphoton processes are of course not restricted to ionization (which is a transition

from a bound to a continuum level) since can also occur in any transition between

bound states, changing Bohr’s third postulate from its initial form !ω0 = Ef − Ei to

the multiphoton one K!ω0 = Ef−Ei, K being the integer number of photons absorbed

by the system. In perturbation theory, the possibility of having multiphoton transitions

is justified by the uncertainty principle for energy and time, δωδt ≥ !, which permits

the system to pass through virtual states during a time δt with an energy defect δω.

3



1. HIGH-ORDER HARMONIC AND ATTOSECOND PULSE
GENERATION

Let us now review the different flavors in which intense field ionization takes place

(reviews of the interaction of atoms with intense fields, including many references, can

be found in [22, 25, 26, 27, 28, 29]).

Tunneling ionization

Let us consider, for the sake of simplicity, an electron in the fundamental state of

the hydrogen atom. The electron is strongly bounded to the nucleus by a Coulomb

potential, as represented in Fig. 1.1a. When a linearly polarized field is applied to the

atom, the Coulomb potential is modified, forming a potential barrier through which

the electron can tunnel to the continuum (see Fig. 1.1b).

Figure 1.1: a Scheme of the evolution of the atomic wavepacket in the absence of an

external field, b when the field permits tunneling ionization and c when the field is so

intense that there is barrier suppression.

The tunneling time can be estimated simply as the ratio of the distance between

the points where the potential barrier crosses the state energy of the electron, to the

velocity of the electron inside the barrier [30, 31]. Let us simplify the tunnel picture

neglecting the Coulomb potential (see Fig. 1.2). If we assume the electron (with charge

q) to be initially at z = 0, with an energy ε0, the tunneling exit coordinate is given by

the condition ε0 = −qE0z, where E0 is the electric field’s amplitude, and therefore

z0 =
|ε0|
qE0

(1.1)

If we now assume a constant velocity through tunneling whose absolute value is

given by
√
2mε0, the tunneling time can be computed as

τt =
z0
v0

= −i
γ

2ω0
(1.2)
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Figure 1.2: Scheme of the simplified tunnel picture neglecting the Coulomb potential.

The tunneling exit coordinate, z0, is given by the condition ε0 = −qE0z.

where γ is the so-called Keldysh adiabaticity parameter [32] defined as

γ =
ω0(2mIp)1/2

qE0
=

√

Ip
2Up

(1.3)

Up = qE2
0/4mω2

0 is the ponderomotive energy, which is the mean kinetic energy of

a free electron in the electromagnetic field, and Ip = |ε0| is the ionization potential.

The Keldysh parameter can be expressed in terms of the tunneling time and the laser

period (T ) as γ ≈ 4π|τt|/T . Intuitively, we shall expect tunneling ionization to be

relevant when the electron has enough time to cross the barrier before the oscillating

electromagnetic field changes its sign. Therefore, the condition for efficient tunneling

corresponds to a Keldysh parameter well below the unity. It can be then assumed that

the electron tunneling is fast enough to approximate the electromagnetic field to a static

field. This remarkable property is fundamental for the development of attophysics.

In order to compute the ionization rate in the tunneling regime, we will resort to

the Amosov-Delone-Krainov (ADK) theory [33], as will be explained in Chapter 2.

Multiphoton ionization (MPI)

When γ % 1 –that is, the ionization potential is much higher than the ponderomotive

energy, which happens for relatively high frequencies or for weak fields– ionization is

dominated by multiphoton absorption (MPI). In this case, we can graphically describe

the process as the absorption of the minimum number of photons (K) needed to promote

the electron to the continuum. As a result, the electron is ionized with a kinetic energy

K!ω0 − Ip, always less than the photon energy.

5
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For weak fields, the ionization rate (probability of ionization in a time unit) is given

by the perturbative formula

w = σ(K)IK , (1.4)

where σ(K) is the multiphoton cross section, which depends on the frequency and

the polarization of the field, and also on the atomic structure, but not on the field

intensity (I). When K = 1, Eq. (1.4) describes the single-photon photoelectric effect,

whose dependence on the field intensity is linear. In the case of intense fields, the

perturbative picture breaks down, and the multiphoton ionization can result in electrons

with energies corresponding to the absorption of a photon number greater than the

minimum necessary (K), a phenomenon referred as above-threshold ionization (ATI).

The first experiments on multiphoton ionization were performed in 1977 by Lompré et

al. [34], whilst above-threshold ionization was first reported by Pierre Agostini et al. in

1979 [35]. From a fundamental viewpoint, the appearance of peaks in the photoelectron

spectrum, each with a width smaller that one photon energy, implies, from the time-

energy uncertainty principle, that multiphoton ionization is a process that takes place

along many cycles of the driving field.

Ionization from barrier suppression

The limiting case of tunneling for the highest intensities is the so-called barrier sup-

pression ionization (BSI), which is depicted in Fig. 1.1c. This kind of ionization takes

place when the field amplitude is so high that the potential barrier lies below the bound

electron’s energy, the electron wavepacket being free to escape from the ion. For even

higher intensities, and contrary to what one would expect intuitively, the ionization

rate is predicted to decrease and a stabilization regime can be reached, in which a large

amount of the population remains trapped in the bound states. Both barrier suppres-

sion ionization and stabilization [36] have not been yet unambiguously recognized in

experiments as they require ultraintense laser pulses with turn-on less than one cycle.

1.1.3 High-order harmonic generation in atoms. Basic characteristics

Let us now review the main characteristics of the harmonic spectrum generated by

an atom irradiated by an intense laser pulse. As we shall see, the highest harmonic

6
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frequencies are obtained in the limit of intense fields and low frequencies, therefore in

the tunneling ionization regime.

The spectrum has certain peculiar features which have been observed in the earliest

experiments [13, 14, 37] and also in the first theoretical simulations [38]. A typical

spectrum is composed of a few low order harmonics whose intensities decrease expo-

nentially, in accordance with the perturbative scaling, followed by a wide region of

harmonics with similar intensities (plateau). The plateau ends sharply at a cut-off

frequency given by the law

!ωmax = Ip + 3.17Up. (1.5)

where Up is the ponderomotive energy. The appearance of a plateau is a remarkable

property, since conveys the efficient emission of shorter wavelengths. Beyond the cut-

off frequency, the intensity of the harmonics decreases again quickly and higher order

harmonics are hardly visible. In Fig. 1.3 we represent a scheme of the typical HHG

spectrum. The scaling of the harmonic q with the intensity is Iq
′
, with q′ < q at the

plateau and cut-off regions, revealing their non-perturbative origin [39]. In contrast,

the low-order harmonics scale with the perturbative power law Iq.

Figure 1.3: Scheme of the HHG spectrum in the tunneling ionization regime, composed

by peaks with frequencies an odd multiple of that of the fundamental field (harmonics).

The spectrum consists of a few low order harmonics whose intensities decrease exponen-

tially, following the perturbative scaling, followed by a wide region of harmonics with

similar intensities (plateau). The plateau ends sharply at a cut-off frequency. (Intensity is

represented here in logarithmic scale).
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Given the fact that the radiation emitted in the harmonic generation is coherent,

there is a fundamental interest in extending the cut-off frequency to higher energies.

From the dependences of the ponderomotive energy, Up ∝ λ2
0I, and the cut-off law in

Eq. (4.1), there are two basic strategies for increasing the extension of the harmonics

spectra: either to increase the intensity (I) or/and to increase the wavelength of the

driving field (λ0).

However, there are physical restrictions that limit the maximum photon energy of

the harmonic spectra. First, if we increase the laser intensity beyond a critical point,

we move to the barrier suppression regime. In this case, the maximum frequency does

not follow anymore the law (4.1), and the spectral plateau is degraded. Second, the

efficiency for the generation of the highest harmonic orders has been shown to decrease

drastically with the wavelength [40, 41]. In addition, harmonics are always generated in

macroscopic media, and therefore phase-matching conditions in the propagation play an

essential role. This will decrease the efficiency of the harmonics when both increasing

the intensity or the wavelength of the driving laser field. Nevertheless, it is possible

to define the experiments under optical phase-matching conditions [42]. It is in this

optimal situation in which the ultrahigh conversion of > 5000 photons mentioned above

was demonstrated [20].

At present, the basic properties of the harmonic spectra generated by intense fields

are well understood. The theoretical treatment of the process admits different levels

of description, which range from the classical to semiclassical and full quantum. In

the following section we will review the details of the classical description of high-

order harmonic generation. Afterwards, in section 1.2, we shall develop the quantum

description of the process, and derive the semiclassical quantum-orbit model.

1.1.4 Simpleman’s model of HHG

The simpleman’s model refers to the classical theory for describing HHG. The approach

is based on three assumptions. First of all, the ionization process depends only on the

instantaneous value of the electromagnetic field. Secondly, right after ionization, the

electron is located at the coordinate origin with zero velocity. These are reasonable

assumptions in the tunneling regime since zero is the mean value of the velocity and

the coordinate of the bound state previous to ionization. The third assumption consists

in considering the dynamics subsequent to ionization as corresponding to a classical

8
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free electron in the electromagnetic field, thus neglecting the influence of the Coulomb

potential. This model was first proposed by van Linden and Muller [43], and Gallagher

[44] to study above-threshold ionization, and later used by Corkum [16] and Kulander

and Schafer [45] to explain the plateau in the harmonic spectrum, and is also known

as the simpleman’s or three-step model.

Let us, therefore, assume an electron which is ionized at the coordinate origin at

the instant t0, with zero velocity, and that evolves under a monochromatic external

field linearly polarized in the x direction, with the form E(t) = E0 sinωt. Integrating

Newton’s law, the classical equations of motion are

ẍ(t) = −
eE0

m
sin(ωt) (1.6)

ẋ(t) =
eE0

mω
[cos(ωt)− cos(ωt0)] (1.7)

x(t) =
eE0

mω2
[sin(ωt)− sin(ωt0)− ω(t− t0) cos(ωt0)] (1.8)

where e is the absolute value of the electron’s charge. We can see that the velocity

includes two distinct terms, a drift term, vdrift = −(eE0/mω) cos(ωt0), and a quiver

term, vp = (eE0/mω) cos(ωt), which describes the oscillation in the external field. The

drift term makes the trajectory to depend strongly on the initial phase of the electric

field, ωt0.

According to the three-step model [16, 45], the generation of the most energetic

harmonics can be understood in terms of simple semiclassical arguments (see Fig. 1.4).

In a first step, the atomic electron appears in the continuum after tunneling through

the Coulomb barrier. After the release, in a second step, the electron is accelerated

by the electric field and driven back towards the parent ion. Then, the high frequency

radiation is emitted in a last step, in which the electron recombines to the ground state

of the parent ion. At this latter moment, the electron emits a photon whose energy

equals the electron’s total energy: kinetic plus ionization potential.

In order to obtain the maximum photon energy that can be generated, we have to

look at the kinetic energy, which is given by T (t) = mẋ2(t)/2. It can be found from

Eqs. (1.7) and (1.8) that the maximum energy of an electron returning to the nucleus

is Tmax = 3.17Up, being Up the ponderomotive energy. As a consequence, we recover

the cut-off law (4.1) for the maximum photon energy.

9
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Figure 1.4: Classical schematic of HHG, by the three-step model. The electric field of an

intense laser extracts an electron from an atom by tunnel ionization through the potential

barrier formed by the Coulomb potential. The laser field then accelerates the electron,

which is driven back to the ground state of the parent atom, liberating its excess energy

as a high-energy photon. Figure courtesy of T. Popmintchev [9].

Let us now study in detail the dynamics represented by Eqs. (1.6)-(1.8). In Fig.

1.5a we have depicted some electron trajectories for different ionization times. The

grey-dashed line represents the electric field in arbitrary units (arb. u.) whereas the

green line represents the nucleus position, at the coordinate origin. In figure 1.5b we

have plotted the recollision kinetic energy of the particles as a function of the recollision

(green points) and ionization time (red points). The maximum recollision energy takes

the well-known value, TM = 3.17Up, for the trajectory represented in blue, with an

excursion time of approximately 0.63 times the period of the laser pulse. Further

recollisions do not raise this maximum energy. Noticeably, in every half cycle of the

laser pulse, there are two possible electron trajectories leading to the same kinetic

energy at recollision, and therefore two possible paths for the generation of the same

harmonic (each named accordingly to the excursion time as short and long trajectory).

We have represented in Fig. 1.5a three pairs of short and long trajectories with energies

at recollision of 3.0Up, 2.5Up and 1.5Up. In Fig. 1.5b we can observe that for the short

trajectory contributions, the less energetic harmonics are emitted earlier than the more

energetic, thus imprinting a positive chirp in the harmonic radiation. This behavior is
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Figure 1.5: a Sample of electronic trajectories in a monochromatic laser field of λ0 = 800

nm and peak intensity 1.57 × 1014 W/cm2. The grey-dashed line represents the electric

field in arbitrary units, whereas the green line, the nucleus position. Three pairs of short

and long trajectories are represented for energies at recollision of 3.0Up (purple), 2.5Up

(dark pink) and 1.5Up (light pink), whereas the most energetic trajectory, raising 3.17Up

at recollision, is represented in blue. The vertical axis represents the distance from the

nucleus. b Returning kinetic energy of the particles at the instant of the first recollision in

a. The green points represent the recollision time, whereas the red points the ionization

time. The blue arrow shows the excursion time for the most energetic trajectory, 0.63T ,

where T is the laser period. In c we present a pair of short and long trajectories, of energy

1.5Up. The grey-shaded regions represent the integration of the electric field over time,

i.e., the velocity of the electron.
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reversed for the long trajectories, which imprint a negative chirp.

In Fig. 1.5c we present a pair of short and long trajectories, corresponding to a

kinetic energy at recollision of 1.5Up. The grey-shaded regions represent the integration

of the electric field over time, i.e., the velocity of the electron. Therefore, the energy at

recollision for the short trajectory will be given by AS +BS , whereas for the long one,

AL+BL+CL. It is straightforward to observe that in this case, AS+BS = AL+BL+CL,

and as a consequence, both trajectories lead to the same kinetic energy at recollision.

It is noticeably that a very simple classical picture provides such a complete de-

scription of the harmonic generation process. This model can also be extended to

other regimes. In the case of multiphoton ionization, the relevant difference is that

the initial velocity will be given by the excess energy in the ionization process, i.e.

v0(t0) = [2(K!ω0 − Ip − Up)/m]1/2. This new contribution to the drift velocity shifts

the trajectories and hence fewer particles with high kinetic energy return to the core.

In any case, the ponderomotive energy is typically smaller in the multiphoton regime,

therefore the highest harmonic order is smaller than in tunneling ionization. For the

case of barrier suppression, the atom becomes quickly ionized, and there is no possi-

bility of recombination except in a small fraction of the first laser period. However, it

has been proposed that, for laser pulses with non adiabatic turn-on, and of high peak

intensity (deep barrier suppression regime), the energy of the recolliding electron can

be high enough to generate photons in the soft X-ray regime [46].

1.1.5 Attosecond pulses

One of the most exciting perspectives of high-order harmonic generation by intense

lasers is the possibility of synthesize XUV pulses of sub-femtosecond duration [17, 47,

48, 49]. An attosecond pulse train (1 as = 10−18 s) is obtained by the selection of the

higher frequency part of the harmonic spectrum that conform the plateau region. For

the correct synthesis, the spectrum should approach two conditions: on one side its

structure should approach that of a frequency comb, in which the harmonic intensities

are similar; on the other side, the relative phase between the harmonics should be

nearly constant (phase locking) [17]. Fortunately, these two conditions are approached

in the typical harmonic spectra generated during the interaction of intense fields with

matter. However, as we will see in chapter 3, the macroscopic conditions of the HHG

experiments play an important role for the final phase locking of the different harmonics.

12
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The first experimental evidence of an attosecond pulse train was achieved by select-

ing five consecutive harmonics generated in argon, obtaining 250 as pulses [18]. Almost

simultaneously, isolated pulses with duration of 650 as were generated by spectrally

filtering a few cut-off harmonics produced by an ultrashort laser pulse [19]. At present,

after postcompression of the attosecond pulses, isolated pulses of temporal durations

< 100 attoseconds have been measured experimentally [21, 50].

Let us now analyze the main characteristics of attosecond pulse generation. In the

previous section, we have presented the harmonic spectrum obtained in the tunnel-

ing ionization regime, in which several harmonics are emitted with similar intensity

conforming the plateau region. If these harmonics were emitted in the Fourier limit

(i.e. with constant relative phase), the pulse duration would scale inversely with the

bandwidth of the coherent spectrum.

Nevertheless, the HHG mechanism itself prevents the harmonics to be emitted in

the Fourier limit. Since the different electronic trajectories rescatter at different times

(see Fig. 1.5), a chirp is imprinted in the emitted radiation. The emission from the

short trajectories is positively chirped (the lower harmonics are emitted before the

higher), while the emission from the long trajectories exhibits a negative chirp (the

higher harmonics are emitted before the lower) [51, 52]. This chirp is referred in the

literature as atto-chirp.

We present in Fig. 1.6b the HHG spectrum obtained from the interaction of a

hydrogen atom with a 800 nm, 5.8 cycles full width at half maximum (FWHM), 1.57×
1014 W/cm2 peak intensity laser pulse, represented in Fig. 1.6a. In Figs. 1.6c-e

we present the attosecond pulse trains computed from the inverse Fourier transform

of the complex harmonic spectrum, windowed by a rectangular mask of ten photons

bandwidth (10ω0) for three positions of the window’s center: (c) at the lower energy

plateau, (d) at the high-energy plateau, and (e) involving harmonics above the cut-off

region. Note that an attosecond pulse is obtained in each half-cycle of the incident

laser pulse. The width of the attosecond pulses becomes narrower, and the contrast

increases, when selecting the higher energy part of the plateau region (d), as phase

locking conditions are better. In the cut-off region (e), longer attosecond pulses are

obtained, as only a couple of harmonics have similar intensity.

It is possible to obtain an isolated attosecond pulse using few-cycle driving pulses

[19, 49], since high order harmonics are then generated in a single rescattering event. As
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Figure 1.6: Attosecond pulse trains obtained from the HHG spectrum from a hydrogen

atom (panel b) driven by the laser pulse represented in panel a, 800 nm in wavelength,

5.8 cycles (15 fs) FWHM and of peak intensity 1.57× 1014 W/cm2. The HHG spectrum is

calculated with the quantum SFA+ theory in hydrogen (see section 1.3). Attosecond pulse

trains are presented after performing the Fourier transform considering a fixed bandwidth

of five harmonic orders: c 7th to 15th, d 17th to 25th and e 25th to 33th.
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Figure 1.7: a. HHG spectrum driven by the laser pulse of panel b, 800 nm in wave-

length, 1.3 cycles (3.4 fs) FWHM and of peak intensity 1.57 × 1014 W/cm2. The HHG

spectrum is calculated with the quantum SFA+ theory in hydrogen (see section 1.3). An

isolated attosecond pulse (panel c) is produced by performing the Fourier transform over

the spectral bandwidth (yellow line) between harmonics 23rd to 31st.

an example, in Fig. 1.7a we present the HHG spectrum obtained from the interaction of

a hydrogen atom with a 800 nm, 1.3 cycles FWHM, 1.57× 1014 W/cm2 peak intensity

laser pulse, represented in 1.7b. By selecting the spectral bandwidth between harmonics

23rd to 31st in the cut-off region, an isolated attosecond pulse is produced (Fig. 1.7c).

Other techniques have been applied for isolating a single attosecond pulse [47, 53, 54],

whereas the extraction of the different attosecond pulses from the train has also been

reported recently [55, 56, 57].

1.2 Quantum description of High-Order Harmonic Gen-

eration

There is a fundamental interest in developing theoretical methods to describe the non-

perturbative interaction of ultraintense lasers with atoms. In its full depth, the theo-

retical description of an atomic electron submitted to an intense electromagnetic field

corresponds to the integration of the time-dependent Schrödinger equation (TDSE),

which has to be done numerically. Nowadays the exact 3D solution is only feasible
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for one and two-electron systems, taking some tens of minutes in the first case (using

a single-core machine), while being a formidable task for supercomputers for the sec-

ond. Even for the single electron, the exact solution of the propagation equations in

macroscopic targets, involving a huge number of atoms, is far from the present and

near-future computing capabilities. In this scenario, the development of approximated

models becomes mandatory. Among them, the S-matrix formulation combined with

the Strong-Field Approximation (SFA) constitute an accredited strategy to approach

the problem [58]. The first studies in this direction where aimed to the computation

of ionization rates and the description of the photoelectron spectrum [59, 60, 61], but

these techniques were progressively extended to treat new phenomenology, as the mul-

tielectron ionization [62] or high-order harmonic generation [63, 64, 65]. In this latter

case, the standard approach combines SFA with a saddle point method to compute

the harmonic spectra very efficiently in terms of computing time. As a result of the

saddle point integration, the standard theory offers a semiclassical description in terms

of electronic trajectories, which also constitutes an extraordinary tool for the physical

understanding of high-order harmonic generation.

1.2.1 Strong Field Approximation theory of HHG

Let us start considering the description of an isolated atom interacting with an intense

electromagnetic field. In the single-active electron approximation, and assuming a

nucleus with infinite mass, the system’s dynamics is described by the time-evolution of

the electronic wavefunction, according to the one-particle Schrödinger equation,

i!
∂

∂t
|ψ(t)〉 = [Ha + Vi(t)] |ψ(t)〉 (1.9)

where Ha = p2/2m − Zq2/r is the atomic Hamiltonian (with q = −|e|, Z the atomic

number, and p the canonical momentum) and Vi(t) = −(q/mc)A(t)pz+q2/(2mc2)A2(t),

in the velocity gauge –being A(t) the vector potential of the electric field– for a linearly

polarized field in the dipole approximation. The exact integral solution can be written

in terms of propagators as

−i|ψ(t)〉 = G+
a (t, t0)|ψ(t0)〉+

1

!

∫ t

t0

dt′G+(t, t′)Vi(t
′)G+

a (t
′, t0)|ψ(t0)〉 (1.10)

G+ being the Green’s function of the whole problem, andG+
a the one associated with the

field-free case. Let us now consider a splitting of the Hilbert space into two subspaces,
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one for the bound states of the atom, Q, and one for the continuum, P . In association,

we define the corresponding projectors Q̂ and P̂ . By definition, Q̂ + P̂ = 1, Q̂P̂ =

P̂ Q̂ = 0, Q̂2 = Q̂, P̂ 2 = P̂ , therefore |ψ(t0)〉 = Q̂|ψ(t0)〉, |ψ(t0)〉 being the initial bound

state (note that this does not imply that the subspace Q contains only this state). Also,

by definition,
[

Ha, Q̂
]

= 0, whereas P̂G+
a (t

′, t0)|ψ(t0)〉 = 0, and Q̂G+
a (t

′, t0)|ψ(t0)〉 =

G+
a (t

′, t0)|ψ(t0)〉. Using these relations, Eq. (1.10) leads to two coupled equations (one

for the bound part of the wavefunction and other for the free part)

− iQ̂|ψ(t)〉 = G+
a (t, t0)|ψ(t0)〉

+
1

!

∫ t

t0

dt′Q̂G+(t, t′)Q̂Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉

+
1

!

∫ t

t0

dt′Q̂G+(t, t′)P̂ Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉 (1.11)

−iP̂ |ψ(t)〉 =
1

!

∫ t

t0

dt′P̂G+(t, t′)Q̂Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉

+
1

!

∫ t

t0

dt′P̂G+(t, t′)P̂ Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉 (1.12)

The first condition of the SFA consists in considering the electrons promoted to the

continuum to have no possibility to recombine, therefore
[

H, P̂
]

) 0. As a result

Q̂G+(t, t′)P̂ = 0, and the third term in the rhs of Eq. (1.11), and the first term in the

rhs of Eq. (1.12) vanish, leading to the following set of equations

− iQ̂|ψ(t)〉 = G+
a (t, t0)|ψ(t0)〉

+
1

!

∫ t

t0

dt′Q̂G+(t, t′)Q̂Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉 (1.13)

−iP̂ |ψ(t)〉 =
1

!

∫ t

t0

dt′P̂G+(t, t′)P̂ Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉 (1.14)

Now the second term in the rhs of Eq. (1.13) describes the non-ionizing excitation

of the ground-state at t′ and its subsequent evolution until t in the combined influence

of the atom and the field. Therefore Eq. (1.13) describes the evolution of the bound

part of the wavefunction as the superposition of the bare (field free) evolution and the

bound-state excitations (here referred as field-dressing, a contribution which will be

important for the extended theory, SFA+, as we shall see later). A second condition of

the standard SFA consists in neglecting these excitations, i.e. setting Q̂Vi(t′)Q̂ = 0 in

Eq. (1.13), therefore considering that the field interaction leads invariably to ionization.
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As a consequence, under the SFA conditions, Eq. (1.10) leads to the following two

coupled equations

− iQ̂|ψ(t)〉 = G+
a (t, t0)|ψ(t0)〉 (1.15)

−iP̂ |ψ(t)〉 =
1

!

∫ t

t0

dt′P̂G+(t, t′)P̂ Vi(t
′)Q̂ G+

a (t
′, t0)|ψ(t0)〉 (1.16)

Now we turn into the computation of the radiation spectrum. Although the har-

monic conversion efficiency is typically orders of magnitude smaller than unity, the use

of intense lasers ensures a sufficient number of radiated photons to allow for a classical

description of the harmonic field. The single-atom radiation, therefore, is proportional

to the dipole acceleration (see section 2.4) a(t) = 〈ψ(t)|â|ψ(t)〉, that can be evaluated

according to the Ehrenfest theorem: â = −(q/m)∇Vc (Vc being the Coulomb potential,

−Zq2/r in our case). The higher-frequency harmonics correspond to the most energetic

photons, thus involving the higher energy transitions, i.e. free to bound. Therefore, we

may use Eqs. (1.15) and (1.16) and approximate the acceleration as

a(t) ) 〈ψ(t)|Q̂âP̂ |ψ(t)〉 + c.c. = (1.17)

=
1

!

∫ t

t0

dt1〈φ0|G−
a (t0, t)âP̂G+(t, t1)P̂ Vi(t1)Q̂G+

a (t1, t0)|φ0〉+ c.c.

where the initial bound state is defined as the atomic ground state |φ0〉. The operators
P̂ Vi(t1)Q̂ and P̂G+(t, t1)P̂ can be evaluated according to the third assumption in the

SFA, that consists in considering the electrons as free particles in the continuum, thus

neglecting the Coulomb interaction during their evolution. If we consider a planewave

basis, {k}, for the subspace defined by P̂ , we have

P̂ )
∫

dk|k〉〈k| (1.18)

and therefore,

P̂ Vi(t1)Q̂ )
∫

dkVi(k, t1)|k〉〈k|Q̂ (1.19)

with Vi(k, t1) = −(q/mc)A(t1)kz + q2A2(t1)/(2mc2). In addition,

P̂G+(t, t1)P̂ = −i
CF

rn
exp

[

−(i/!)

∫ t

t1

dτ P̂H(τ)P̂

]

(1.20)

where we have introduced the Coulomb factor [66] CF /rn =
(

2Z2/n2E0r
)n
. Since the

ionized electrons are considered as free particles, we have

P̂H(τ)P̂ )
∫

dk ε(k, τ)|k〉〈k| (1.21)
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1.2 Quantum description of High-Order Harmonic Generation

where ε(k, τ) = !2k2/2m − (!q/mc)A(τ)kz + q2A2(τ)/(2mc2). Therefore, Eq. (1.20)

describes the evolution of the free particle in the electromagnetic field (Volkov wave).

With these definitions, the acceleration calculated in the standard SFA, Eq.(1.18), can

be written as a(t) =
∫

dka(k, t) + c.c. where

a(k, t) = −
i

!
CF

∫ t

t0

dt1e
iε0(t−t1)/!e

−i 1
!

∫ t
t1
ε(k,τ)dτ 〈φ0|â|k〉Vi(k, t1)〈k|r−n|φ0〉 (1.22)

At this point we can define the action as

S(k, t, t1) =

∫ t

t1

[ε(k, τ) − ε0] dτ (1.23)

so the acceleration can be written as

a(k, t) = −
i

!
CF

∫ t

t0

dt1e
−i 1

!
S(k,t,t1)〈φ0|â|k〉Vi(k, t1)〈k|r−n|φ0〉 (1.24)

Eq. (1.24) can be nicely interpreted as a sum of probability amplitudes of the follow-

ing processes: (i) Vi(k, t1)〈k|r−n|φ0〉 corresponds to the electron’s transition amplitude

from the ground state to the continuum at a time t1 with a momentum k; (ii) the wave-

function propagates from t1 to t in the continuum acquiring a phase factor e−iS(k,t,t1)/!;

and (iii), the electron recombines at t with the probability amplitude 〈φ0|â|k〉.
Finally, the time integral leading to a(k) can be computed very effectively numeri-

cally by integrating the set of (uncoupled) one dimensional differential equations, each

associated with a particular Volkov wave k, that results from differentiating Eq. (1.22)

[41]

d

dt
a(k, t) =

i

!
[ε0 − ε(k, t)] a(k, t) −

i

!
CF 〈φ0|â|k〉Vi(k, t)〈k|r−n|φ0〉 (1.25)

1.2.2 Saddle Point Analysis

Although Eq. (1.25) represents a computationally efficient method to compute the

exact SFA dipole acceleration, the physical insight of the process remains hidden.

Therefore, it is still of interest to resort to the semiclassical approach, based in the

saddle-point approximation, developed by M. Lewenstein et al. [63]. From equation

(1.24) the acceleration can be written as

a(t) = −
i

!
CF

∫ t

t0

dt1

∫

dke−i 1
!
S(k,t,t1)η(k, t1) (1.26)
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where η(k, t1) = 〈φ0|â|k〉Vi(k, t1)〈k|r−n|φ0〉 includes the ionization and recombination

matrix elements. The harmonic spectrum is computed form the Fourier transform of

Eq. (1.26),

a(ω) = −
i

!
CF

∫

dt

∫ t

t0

dt1

∫

dke−i 1
!
S(k,t,t1)+iωtη(k, t1) (1.27)

For computing the acceleration spectrum we have to integrate over three variables:

(i) the momentum k, in a three-dimensional space, (ii) the ionization time t1, and

(iii) the returning time t. First, we implement the saddle point approximation in the

momentum integral. From Eq. (1.26), one can observe that the complex exponential

of the action S(k, t, t1) oscillates much faster than η(k, t1). As a consequence, the

relevant contributions to the momentum-space integral result from the neighborhood

of the stationary points of the semiclassical action, i.e.

∇kS(k, t, t1) = 0 (1.28)

The stationary momentum corresponds to kstx = 0, ksty = 0 and kstz = q
c!(t−t1)

∫ t
t1
A(τ)dτ .

As the velocity is given by v(τ) = !k/m−qA(τ)/(mc), Eq. (1.28) implies r(t)−r(t1) =

0, i.e., the stationary points of the semiclassical action correspond to those kst in which

the electron born at time t1 returns to the same position at time t. We can now perform

a Taylor expansion on the action around the stationary points, as

S(k, t, t1) ) S(kst, t, t1) +
1

2

∑

i #=j

∂S(k, t, t1)

∂kikj

∣

∣

∣

st
(ki − ksti )(kj − kstj ) +

+
1

2

∑

i

∂2S(k, t, t1)

∂k2i

∣

∣

∣

st
(ki − ksti )2 =

= S(kst, t, t1) +
!2

2m
(t− t1)

[

k2x + k2y + (kz − kstz )
2
]

(1.29)

and, approximating η(k, t1) ) η(kst, t1), the acceleration becomes

a(ω) = −
i

!
CF

∫

dt

∫ t

t0

dt1e
−i 1

!
S(kst,t,t1)+iωtη(kst, t1)

∫

dke−i !

2m (t−t1)[k2x+k2y+(kz−kstz )2] =

= −
i

!
CF

∫

dt

∫ t

t0

dt1

[

2πm

i!(t− t1)

]3/2

e−i 1
!
S(kst,t,t1)+iωtη(kst, t1) (1.30)

Applying the saddle-point approximation in the ionization time, i.e., ∂S(kst, t, t1)/∂t1 =

0, we find a stationary value for the ionization time

ε(kst, tst1 ) = ε0 →
1

2m

[

!kst −
q

c
A(tst1 )

]2
= −Ip (1.31)
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1.2 Quantum description of High-Order Harmonic Generation

that means that the kinetic energy at the ionization time equals the energy of the

bound state and, therefore, is negative (as Ip = |ε0|). If Ip is zero, the electron leaving

the nucleus at time t− tst1 should have a velocity equal to zero (recovering the simple

man’s model of section 1.1.4). However, since Ip -= 0, the initial velocity is imaginary,

which expresses the fact that the atom can not be described classically. In addition,

condition (1.31) leads also to a complex ionization time tst1 . The imaginary part of tst1 is

interpreted as the time the electron needs to tunnel the Coulomb barrier [33], whereas

the real part of tst1 is interpreted as the ionization time in which the electron appears

in the continuum. The difference between the semiclassical and classical pictures of

tunneling has been recently confirmed experimentally [67]. Applying this second saddle

point condition, the acceleration spectrum becomes

a(ω) = −
i

!
CF

∑

j

∫

dt

[

2πm

i!(t− tst1,j)

]3/2

e−i 1
!
S(kst,t,tst1,j)+iωtη(kst, tst1,j) (1.32)

where we sum over the ionization times that fulfills condition (1.31). Finally, we can

perform the saddle-point approximation for the returning time t, i.e.

∂S(kst, t, tst1 )− !ωt

∂t
= 0 → ε(kst, tst) = !ω − ε0 (1.33)

This latter equation express the energy conservation law at the time of recombi-

nation, where the energy of the emitted photon corresponds to the kinetic energy of

the recolliding electron plus the ionization potential Ip = |ε0|. As a conclusion, the

saddle-point approximation method recovers the classical description of HHG (see sec-

tion 1.1.4), except that takes into account the tunneling process and its influence on

the electron kinetic energy at the moment of recombination.

Semiclassical Analysis. Trajectories and phase of the harmonics

The first condition derived from the saddle-point approximation (1.28) implies that an

electron ionized at time t1 returns to the same position at time t. In principle, the

electron can be ionized at any position as long as the ground-state wavefunction has

not negligible probability. However, the acceleration at rescattering is maximum at

the nucleus position. As a consequence, to a good approximation, the saddle point

condition represents trajectories born in the nucleus position, that return to the same

position to emit a photon, i.e. closed loops.
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On the other hand, condition (1.33) imposes a limit to the energy of the emitted

harmonic. Classically, the maximum kinetic energy of the closed-loop trajectories is

3.17Up, thus (1.33) contains the empirical cut-off formula (4.1). However, the definition

of a complex ionization time leads to a correction:

!ωmax = IpF (Ip/Up) + 3.17Up. (1.34)

where F (Ip/Up) is a function that takes values in the range between 1.32 and 1.24 [63].

The saddle approximation gives a nice physical interpretation of the HHG process

in terms of semiclassical trajectories. As it was shown in section 1.1.4, in each half cycle

of the laser pulse there are two electron trajectories leading to the same kinetic energy

at recollision, named as short and long trajectories, accordingly to their excursion time.

Eq. (1.32) implies that the phase associated to each trajectory contribution generating

an harmonic q is given by the semiclassical action acquired during the excursion time,

i.e.,

φi
q =

1

!
S(kst,i, tst,i, tst,i1 ) + ωtst,i (1.35)

This phase can be approximated by the product of the ponderomotive energy Up

(i.e. the mean energy of the free electron in the oscillating field) and the excursion time

τ iq = tst,i − tst,i1 , as

φi
q ) −

1

!
Upτ

i
q = −αi

qI (1.36)

The factor αi
q is proportional to the excursion time, so it is larger for long (L)

trajectories than for the short (S) ones (αL
q > αS

q ) [64]. Since the quantum orbit

phase is translated to the harmonic radiation, the final harmonic emission reflects the

interference between the contributions of the short and long trajectories [68, 69].

Let us now concentrate on the spectral properties of the harmonic emission, separat-

ing the contributions from short and long trajectories. As the phase of the harmonics

depends on the laser pulse intensity I, there is an intrinsic chirp in the harmonic

emission due to the time-dependent intensity over the laser pulse envelope [70]. The

contribution of a single trajectory to the time-dependent acceleration is given by

a(t) =

∫

a(ω)e−iωtdω =

∫

|a(ω)|eiφ(ω,t
st)e−iωtdω (1.37)

therefore, the instantaneous frequency of the harmonic is given as

ω(t) =
∂

∂t

[

ωt− φ(ω, tst)
]

) ω + α(ω)
∂I

∂t
(1.38)
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1.2 Quantum description of High-Order Harmonic Generation

Figure 1.8: Scheme of the chirp induced on the harmonic emission peak. The region over

the dashed line of the driving pulse has enough intensity to generate the qth-order harmonic,

first the higher frequencies and later the lower ones. The long trajectory distribution is

wider than the short one.

Hence the harmonics are generated with a temporal chirp that depends on the

temporal distribution of the laser pulse intensity, and the particular path followed by

the rescattered electron. For instance, considering the harmonic peak with frequency

qω0, the higher frequencies are generated in the first place, during the leading part of

the pulse, whereas lower frequencies are generated at the pulse tail (see scheme in Fig.

1.8). This chirp, intrinsic to the harmonic peak, is different to the atto-chirp described

in section 1.1.5, that results from the relative phase of consecutive harmonics, also

referred as extrinsic phase [52].

From Eq. (1.38) we observe that the short-trajectory contribution is dominant near

the central part of the harmonic peak, whereas the long contribution spreads over a

wider spectral window, as αL
q > αS

q . As a result, short trajectories induce a smaller

intrinsic chirp (narrow harmonic spectrum) whereas long trajectories causes a larger

intrinsic chirp (wider harmonic spectrum) [71, 72]. In addition, we already know that

the efficiency of the short paths is higher than the long ones, as the dipole acceleration

is inversely proportional to the excursion time –see Eq. (1.32)–. Those two features

lead to the spectral distributions shown schematically in Fig. 1.8. The chirp in the

harmonic emission was firstly observed by Bellini et al. [73] by measuring the coherence

time of the harmonics. To measure the coherence time is equivalent to determine the

spectral width of the harmonics, since it is inversely proportional to the bandwidth.
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1.3 Computing high-order harmonic generation within the

SFA+

The standard model in which SFA is combined with a saddle point method [63] succeeds

in predicting the mode locking of the highest order harmonics, chirps and modulation

of the yields with the intensity [69]. However, despite of these achievements, studies

on the scaling of the harmonic yield with wavelength point out departures between the

predictions of this model and the exact TDSE [40, 74, 75]. It was recently shown that,

for the quantitative improvement of the model predictions, the standard SFA has to be

relaxed to incorporate the field-induced dynamics on the ground state, at least during

the rescattering event [41, 76]. This approach has been developed in our group, an we

refer it as SFA+. In addition to include some part of the ground-state dressing, SFA+

does not resort to the saddle-point approximation, therefore including the full quantum

description of the high-order harmonic generation process.

The extension developed in the SFA+, consists on taking into account Q̂Vi(t′)Q̂ -= 0

in Eq. (1.13) [41], including the possibility of atomic bound-state excitations, thus

softening the constraints of standard SFA. As a consequence, the acceleration is given

by

a(t) ) 〈ψ(t)|Q̂âP̂ |ψ(t)〉 + c.c. = ab(t) + ad(t) + c.c. (1.39)

where ab and ad are two interfering contributions to the total acceleration, associated

with transitions between the continuum to the bare ground state or to its field-dressing

(not considered in the standard SFA). Respectively [41],

ab(t) =
1

!

∫ t

t0

dt1〈φ0|G−
a (t0, t)âP̂G+(t, t1)P̂ Vi(t1)Q̂G+

a (t1, t0)|φ0〉 (1.40)

ad(t) =
1

!2

∫ t

t0

dt2〈φ0|G−
a (t0, t2)Q̂Vi(t2)Q̂G−(t2, t)Q̂â×

∫ t2

t0

dt1P̂G+(t, t1)P̂ Vi(t1)Q̂G+
a (t1, t0)|φ0〉 (1.41)

The operators P̂ Vi(t1)Q̂ and P̂G+(t, t1)P̂ , were already described in section 1.2.1,

so ab(t) corresponds to the dipole acceleration computed in the standard SFA, and can

be written as ab(t) =
∫

dkab(k, t) where ab(k, t) is given by Eq. (1.22).

The evaluation of the operators of the field-dressing part, Q̂Vi(t2)Q̂ and Q̂G−(t, t2)Q̂,

is not straightforward in the general case. However, some simplifications arise for the
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1.3 Computing high-order harmonic generation within the SFA+

particular study of high-order harmonic generation. High-order harmonics are gener-

ated from the transitions from continuum to bound states that take place during the

process of rescattering of the ionized electron with the parent ion. Instead of assuming

this process as instantaneous, let us consider that the harmonic generation at time t

is triggered by the collision of the ionized electron taking place over the small time

interval, t − δts to t. Assuming the bound state wavefunction to be the ground state

at the beginning of this interval, Eq. (1.13) predicts its evolution during the temporal

lapse of rescattering, by setting the the lower limit t0 of the time integral to the initial

time before rescattering t− δts,

− iQ̂|ψ(t)〉 ) G+
a (t, t0)|φ0〉

+
1

!

∫ t

t−δts

dt′Q̂G+(t, t′)Q̂Vi(t
′)Q̂ G+

a (t
′, t0))|φ0〉 (1.42)

and

ad(t) )
1

!2

∫ t

t−δts

dt2〈φ0|G−
a (t0, t2)Q̂Vi(t2)Q̂G−(t2, t)Q̂â×

∫ t2

t0

dt1P̂G+(t, t1)P̂ Vi(t1)Q̂G+
a (t1, t0)|φ0〉 (1.43)

The dynamics of the bound excitations during the time lapse δts is given by the operator

Q̂G−(t2, t)Q̂ which is, in turn, a function of the total Hamiltonian H(t) = Ha + Vi(t).

The rescattering event is defined by the overlap of the free electron wavefunction with

the coordinate origin, where the potential singularity is located. With this definition,

dividing the spatial width of the expanded wavepacket by its rescattering velocity, the

scattering time lapse for the most energetic electrons can be evaluated as [41]

δts ) (3π/2ω0)
√

|ε0|/3.17Up (1.44)

where Up is the ponderomotive energy. For large Up, this time lapse is small enough to

approximate the time-dependent operator Vi(t) in Eqs. (1.42) and (1.43) by its time

average over δts

∆s = 〈Vi(t)〉 = (1/δts)

∫ t

t−δts

[

−(q!/mc)A(τ)kz + (q2/2mc2)A2(τ)
]

dτ (1.45)

where kz is a relevant momentum of the state, than can be evaluated as [41]

kz = −
2

!

√

mUp
sinω0δts
ω0δts



1−

√

1−
1

6

(

1 +
ε0
Up

+
sin 2ω0δts
2ω0δts

)(

sinω0δts
ω0δts

)−2




(1.46)
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Therefore Q̂G−(t2, t)Q̂ can be approximated by i exp [i(ε0 +∆s)(t− t2)], where we as-

sume that the mean energy of the ground state after interacting with Q̂Vi(t2)Q̂ is ) ε0.

On the other hand, one should look also for a simplified form of the interaction operator

Q̂Vi(t2)Q̂. A first choice would be to replace it by the time-averaged form ∆s, but it

proves not to be a sufficiently accurate approximation. We shall, therefore, consider

the factorization Vi(t) = H(t)−Ha ) p2/2m+∆s −Ha. The Coulomb term in H(t) is

neglected as we assume the ground-state excitations to have minimal probability near

the origin (which is a reasonable assumption for a p state). With these approximations,

and after some algebra [41], the dressing contribution to the acceleration can be written

in terms of the bare acceleration as

ad(k, t) ) −
[

1 +
k2/2m− ε0

∆s

]

ab(k, t) (1.47)

Therefore the total acceleration is given by

a(t) = −
∫

dk
!2k2/2m− ε0

∆s
ab(k, t) + c.c. (1.48)

Note that the opposite sign of ad relative to ab, see Eq. (1.47), leads to the destructive

interference between the bare and dressing contributions to the acceleration. This is

a main result of the SFA+ approach, as the standard SFA considers only the bare

contribution, ab. The degree of interference changes with the laser parameters and

affects the harmonic yield. In particular, through this interference, SFA+ gives a

proper account of the scaling of the harmonic intensities with the laser wavelength [41].

Since the time integral leading to the standard SFA acceleration, ab(k), can be

computed by integrating the set of (uncoupled) one dimensional differential equations

–see Eq. (1.25)–, there is not an additional computation difficulty in evaluating the

SFA+ acceleration (1.48).

In order to gain insight on the validity of SFA+, we show in Fig. 1.9 –extracted from

[76]– the results for the computations of the harmonic spectra in hydrogen for three

different laser parameters. The plots in the figure correspond to the direct outcome

from the Fourier transform of the dipole acceleration, i.e. no relative shift or scalings

have been used. The result of the exact computation of the 3D TDSE is plotted using

blue lines, while the result of the SFA+ computation is plotted using filled green areas,

and the orange line corresponds to the computation in the SFA approach, i.e. not

including ground-state dressing, ad(t). We recall that here the SFA computations are
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Figure 1.9: Comparison of the harmonic spectra computed from the exact numerical

integration of the TDSE (blue line), the SFA model (orange line) and SFA+ model (green

filled area) for different laser parameters: a 9 cycle pulse of trapezoidal shape, with half

period turn-on and turn-off and constant intensity in between, with intensity ) 1.58×1014

W/cm2 and wavelength 800 nm, b 4 cycle full temporal length (1.4 cycles FQHM) sin2

envelope with intensity ) 1.58 × 1014 W/cm2 and wavelength 1.2 µm, and c 4 cycle full

temporal length sin2 envelope (1.4 cycles FWHM) with intensity ) 9 × 1013 W/cm2 and

wavelength 1.6 µm. Figure extracted from [76].
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carried on using Eq. (1.25), i.e. also without resort to the saddle point method. The

field intensities are changed from 1.58×1014 W/cm2 in part (a) and (b) to 9×1013 in (c),

wavelengths correspond to (a) 800 nm, (b) 1.2 µm and (c) 1.6 µm, the field envelopes

are 9 cycle trapezoidal (half -cycle turn-on and turn-off) in (a) and 4-cycle full temporal

length sine squared in (b) and (c). More comparisons including, for instance, carrier-

envelope phase offsets are found in [41, 77, 78]. As a general trend, the SFA+ method

offers a more accurate description of the high-order harmonic plateau than the SFA,

and for a wider frequency interval. For the longer pulses (Fig. 1.9a), the effect of

ionization shows up, and the SFA+ model gives harmonic yields slightly higher than

the TDSE.

We may notice that both models, SFA and SFA+, become progressively inaccurate

for the lowest harmonics. These correspond to low-energy transitions, involving excited

states in the atom, and are not fully accounted into the dressing term of SFA+, while

are ruled out completely in the standard SFA. A rough estimation is to consider the

law |ε| + 3.17Up valid also for the maximum frequency reachable from excited states.

In such case, the influence of the excited states extends in the harmonic spectrum up

to a maximum energy |ε0| − |ε| below the cut-off frequency, being ε the energy of the

lowest excited state. Therefore, one can consider that the frequency window extending

|ε0| − |ε| below the cut-off is produced solely by the transitions involving the ground

state, and, therefore, will be properly addressed by SFA and SFA+. For the case of

hydrogen, this window is of about 10 eV. Therefore, for the 800nm case of Fig. 1.9a,

this defines a region window of validity for the SFA and SFA+ approaches from the cut-

off at the 29th harmonic, down to the 23th harmonic. The figure seems to corroborate

this discussion, as the description of the harmonic spectrum by the SFA+ model in this

window is excellent. We shall note, also, that the estimation of this window is quite

conservative, as the model description can be accurate in a wider spectral region if the

population of the excited states is small, for instance for longer wavelengths (Figs. 1.9b

and 1.9c).

The results presented here were obtained in hydrogen. Along this thesis we will

perform SFA+ also in argon, xenon and helium. For that purpose, we will perform

our simulations in the single-electron approximation using the Roothaan-Hartree-Fock

wavefunction [79] for the ionization and rescattering matrix elements for each gas com-

ponent. The acceleration operator for hydrogen in Eq. (1.48) will be replaced ac-
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1.3 Computing high-order harmonic generation within the SFA+

cordingly with the gradient of the Coulomb potential of the corresponding element ion

[80].

1.3.1 Transversal saddle-point approximation

In order to speed up the calculations of the single-atom high-order harmonic generation

by linearly polarized fields, we combine the SFA+ and saddle point approaches by

implementing a saddle-point approach in the momentum space plane, transversal to

the field polarization [81]. With this we shall decrease the computational time, while

still keeping a full quantum description along the polarization axis, where the relevant

dynamics takes place. To this aim we use Eq. (1.26), and turning into cylindrical

coordinates and exploiting the symmetry around the polarization axis, the acceleration

can written as

ab(t) = −
i

!
CF

∫ t

t0

dt1

∫ ∫

2πkρdkρdkze
−i 1

!
S(k,t,t1)η(k, t1) (1.49)

Now we implement the saddle point approximation in the transversal momentum,

kρ, i.e. ∇kρS(k, t, t1) = 0, that corresponds to kstρ = 0. The Taylor expansion on the

action around the stationary points, gives

S(k, t, t1) ) S(kz, k
st
ρ , t, t1) +

!2

2m
(t− t1)k

2
ρ (1.50)

Therefore the acceleration can be approximated as

ab(t) = −
i

!
2πCF

∫ t

t0

dt1

∫

dkze
−i 1

!
S(kz,kstρ ,t,t1)η(kz , k

st
ρ , t1)

∫

kρdkρe
−i !

2m (t−t1)k2ρ =

= −
2πmCF

!2(t− t1)

∫ t

t0

dt1

∫

dkze
−i 1

!
S(kz ,kstρ ,t,t1)η(kz , k

st
ρ , t1) (1.51)

since
∫

kρdkρe
−i !

2m (t−t1)k2ρ =
m

i!(t− t1)
(1.52)

We now take as an approximation for the excursion time t − t1 ) 0.63T , where T

is the laser period. As it was shown in Fig. 1.5, this is valid for the harmonics in the

cut-off region. The acceleration is therefore written as,

ab(t) ) −
πmCF

!20.63T

∫ t

t0

dt1

∫

dkze
−i 1

!
S(kz ,kstρ ,t,t1)η(kz , k

st
ρ , t1) (1.53)

29
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Figure 1.10: Comparison of the harmonic spectra computed from the SFA+ model (green

line), and the SFA+ model combined with the transversal saddle point approximation (blue

line) for different laser parameters: a 8 cycle full temporal length sin2 envelope (2.9 cycles

FWHM) with intensity ) 1.58× 1014 W/cm2 and wavelength 800 nm, and b 4 cycle full

temporal length sin2 envelope (1.4 cycles FWHM) with intensity ) 8.75×1013 W/cm2 and

wavelength 1.6 µm.
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1.3 Computing high-order harmonic generation within the SFA+

As a result, implementing the saddle point approximation in the transversal plane

we transform the three-dimensional integral in the momentum space in one-dimensional,

thus reducing the computational time. In Fig. 1.10 we show the harmonic spectra in

hydrogen for two different laser parameters, comparing the result of the SFA+ computa-

tion (green line), and the combination of the SFA+ with the saddle point approximation

in the transversal plane (blue line), where ab(t) is computed using Eq. (1.53). In Fig.

1.10a the laser pulse is modeled as a sin2 function, 8 cycles full temporal length (2.9

cycles FWHM), 800 nm and peak intensity 1.58 × 1014 W/cm2, whereas in Fig. 1.10b

the laser pulse is 4 cycles full temporal length (1.4 cycles FWHM), 1.6 µm, and peak

intensity 8.75×1013 W/cm2. As a general trend, the saddle point approximation in the

transversal plane is in good agreement with the complete SFA+ theory, being perfectly

matched in the cut-off region.

1.3.2 Time-frequency analysis

One of the most interesting deliverables of the saddle point analysis is its nice inter-

pretation of HHG in terms of semiclassical trajectories. It is very useful to know when

the electron is ionized and when recollides in order to control the HHG process as well

as to understand how the attosecond pulses are obtained. Unfortunately, this classi-

cal interpretation is missed when considering the full quantum description of HHG, as

given by the SFA+ or the TDSE. However, it is still possible to have some insight from

these calculations, using a time-frequency analysis (TFA).

In the TFA, we select a spectral window in the harmonic spectrum and take its

Fourier transform. By shifting the window to cover the entire harmonic spectrum, it

is possible to resolve the time in which the different harmonics are generated. Never-

theless, due to the uncertainty principle, we have to be careful when interpreting the

results of the TFA, as the width of the spectral window determines the resolution in

time: the narrower the spectral window is, the less resolution we obtain in the temporal

domain.

In Fig. 1.11 we present the time-frequency analysis for the HHG spectrum driven

by a 1.3 cycles FWHM, 800 nm laser pulse, which corresponds to the same case as

shown in Fig. 1.7. We consider a Gaussian spectral window with FWHM 3ω0 (see

blue dashed line in plot 1.11b). In the TFA (1.11c) we can identify when is generated

each harmonic. For instance, it allows to identify the harmonics generated by the
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short (positive slope) and the long (negative slope) trajectory contributions. In figure

1.11c we have plotted in black dots the recollision energies of the classical trajectories

obtained from Eq. (1.8), using the condition (4.1), with the correction to the ionization

potential given in (1.34), with F (Ip/Up) = 1.28. We see that the TFA is in excellent

agreement with the classical predictions for the rescattering energy of the electronic

trajectories.

Figure 1.11: Time-frequency analysis for the HHG spectrum showed in b driven by the

laser pulse of panel a, 800 nm in wavelength, 1.3 cycles FWHM (3.4 fs FWHM) and of peak

intensity 1.57 × 1014 W/cm2. We consider a Gaussian spectral window whose FWHM is

3ω0 (see blue dashed line in b). In the time-frequency analysis, c, the black dots represent

the classical trajectories given by (1.34), with F (Ip/Up) = 1.28.

We can also observe in Fig. 1.11 that the efficiency of the harmonic generation via

shorter paths is greater than via longer paths. This is in agreement with the exact

solution of the TDSE [78] and is interpreted in terms of the spreading of the wavefunc-

tion of the recoiling electron, which is greater for the longer trajectories. For the sake

of clarity we present in Fig. 1.12 the time-frequency analysis for the HHG spectrum
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1.3 Computing high-order harmonic generation within the SFA+

driven by a 5.8 cycles FWHM, 800 nm laser pulse, which corresponds to the same case

as shown in Fig. 1.6. Again, the agreement between the classical trajectories –for the

exact cut-off law (1.34), with F (Ip/Up) = 1.28– and the TFA is excellent.

Figure 1.12: Time-frequency analysis for the HHG spectrum showed in b driven by the

laser pulse of panel a, 800 nm in wavelength, 5.8 cycles FWHM (15.5 fs FWHM) and of

peak intensity 1.57× 1014 W/cm2. We consider a gaussian spectral window whose FWHM

is 3ω0 (see blue dashed line in b). In the time-frequency analysis, c, the black dots represent

the classical trajectories given by (1.34), with F (Ip/Up) = 1.28.
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Computing high-order harmonic

propagation

The aim of this chapter is to establish the connection between the harmonic radiation

emitted from a single atom and the emission of a macroscopic sample. The appropri-

ate description of experiments involving high-order harmonic generation (HHG) has

to include a faithful reproduction not only of the single radiator (atom or molecule)

spectrum but also of the propagation of the harmonics in the medium and its far field

distribution at the detectors. The fundamental aspects of the computations of high-

order harmonic propagation were discussed by Anne L’Huillier et al. in two seminal

articles [82, 83].

From the fundamental viewpoint, the harmonic radiation emitted by a macroscopic

target corresponds to the coherent addition of the elementary contributions of every

atom or molecule in the sample. For a number of reasons that we will see in this chapter,

this coherent addition is not generally optimal, since the phases of the elementary

radiators are not matched. This limitation was recognized very early, theoretically

[84] and experimentally [70, 85], as a fundamental issue limiting the efficiency of HHG

from macroscopic samples. On the other hand phase-matching is shown to depend

on the different parameters of the experiment (including atomic species, beam shape,

target configuration, etc.), consequently offering several degrees of freedom for the

optimization of the harmonic yield.

Theoretically, the computation of HHG from macroscopic targets is a formidable

task due to the disparity of the scales involved (few tens of nanometers for the shorter
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

harmonic wavelengths and propagation distances up to few millimeters). In the previous

chapter, we presented some efficient methods, available in our group, to compute the

harmonic radiation from an isolated atom. In this chapter we shall present a new

method for the computation of the high-order harmonic propagation in rare gases.

We have divided this chapter in five sections. First of all, we will briefly deduce the

wave equations for the radiation electromagnetic field from the Maxwell’s equations.

Following, in section 2.2, we will review the relevant aspects of field propagation in

linear media, introducing the Gaussian beam. In section 2.3, we will study the case of

non-linear media, on one hand analyzing the different contributions to phase-matching,

geometrical and intrinsic, and, on the other hand, the effect of ionization (free charges

and neutral-atom depletion) in the propagation of the fundamental field. We shall

also review the conditions for optimal phase-matching, and the experimental set-up

developed at JILA, University of Colorado. In section 2.4, we will introduce our original

method for computing high-order harmonic propagation, based on the wave equation

propagator. Finally, in section 2.5 we will introduce the Discrete Dipole Approximation,

that we use to speed up the computations, and analyze the convergence of this approach.

2.1 Wave equations for the transversal electromagnetic

field

Let us begin considering the Maxwell’s equations

∇×E = −
1

c

∂

∂t
H (2.1a)

∇×H =
4π

c
J+

1

c

∂

∂t
E (2.1b)

∇ ·E = 4πρ (2.1c)

∇ ·H = 0 (2.1d)

where E is the electric field, H the magnetic field, c is the speed of light, and ρ is

the charge density. Without any loose in accuracy, we can decompose the fields in a

transversal (⊥) and a longitudinal (||) component (E = E⊥+E||), satisfying ∇×E|| = 0

and ∇ · E⊥ = 0. With this factorization, we obtain the following Maxwell’s equations
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2.1 Wave equations for the transversal electromagnetic field

for the longitudinal field,

∇ ·E|| = 4πρ (2.2a)

∇ ·H|| = 0 (2.2b)

∇×H|| =
4π

c
J|| +

1

c

∂

∂t
E|| (2.2c)

Performing the temporal derivative of ∇ ·E|| and taking into account that ∇×H|| = 0,

Eqs. (2.2a) and (2.2c) lead to the charge continuity equation

∂ρ

∂t
+∇ · J|| = 0 (2.3)

Therefore the longitudinal part describes the Coulomb, non radiative, field. On the

other hand, the Maxwell’s equations for the transverse components read as

∇×E⊥ = −
1

c

∂

∂t
H⊥ (2.4a)

∇×H⊥ =
4π

c
J⊥ +

1

c

∂

∂t
E⊥ (2.4b)

Now, applying the rotational to ∇ × E⊥, and taking into account the identity

∇ × (∇ × E⊥) = ∇(∇ · E⊥) − ∇2 · E⊥, one can obtain the wave equation for the

transversal electric field

∇2E⊥(r, t)−
1

c2
∂

∂t2
E⊥(r, t) =

4π

c2
∂

∂t
J⊥(r, t) (2.5)

The general problem of radiation propagation amounts to solve this wave equation

for the transversal electric field. From its structure we can see that the source of

the electromagnetic field is given by the temporal derivative of the current density,

J = Jb+Jf , where the subindex b and f stand for bound and free charges respectively.

Traditionally, bound charges are not considered as current generators, but as polarizers

of the medium. Therefore, it is common to express the bound charge current density

using the medium polarizability, P, as Jb =
∂
∂tP, so we can rewrite 2.5 as

∇2E⊥(r, t)−
1

c2
∂

∂t2
E⊥(r, t) =

4π

c2
∂

∂t
J⊥,f (r, t) +

4π

c2
∂2

∂t2
P⊥(r, t) (2.6)
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

2.2 Propagation in linear media

In this section we will review some fundamental aspects of propagation in linear media.

In first place, we shall focus to the monochromatic case, introducing the empirical

formulae for the refractive index, that we will be employed later in our computations.

Also we shall introduce the Gaussian beam as a particular solution of the wave equation

representing a focused beam.

2.2.1 Monochromatic propagation in linear media

Let us now consider E(r, t) as a linear polarized monochromatic field with a period

2π/ω. The response of the neutral media to a monochromatic wave is characterized by

the susceptibility χ(ω),

P(r, t) = χ(ω)E(r, t) (2.7)

On the other hand, the response of the free charges is characterized by the conduc-

tivity σ(ω), which in the case of linear optics corresponds to

Jf (r, t) = σ(ω)E(r, t) (2.8)

Fourier transforming Eq. (2.6) we find

∇2E(r, t) +
ω2

c2
n2
r(ω)E(r, t) = 0 (2.9)

where we have defined the refractive index, nr(ω), as

n2
r(ω) = 1 + 4π

[

χ(ω) + i
σ(ω)

ω

]

(2.10)

This quantity encloses all the information about the linear response of the medium to

the electromagnetic field. The dependence of the refractive index with the frequency is

the defining characteristic of a dispersive medium, in which monochromatic waves of

different frequencies travel with different velocities. In the case of this study, where we

consider gas targets, we can approximate the refractive index as

nr(ω) ) 1 + 2π

[

χ(ω) + i
σ(ω)

ω

]

(2.11)
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2.2 Propagation in linear media

Assuming the bound electrons as harmonic oscillators, and the free charges as evolv-

ing only under the influence of the electromagnetic field, we can write the susceptibility

and conductivity as

σ(ω) = iωnfq
2 mω2 − iωb

m2ω4 + ω2b2
(2.12)

χ(ω) =
nb

m
q2

m(ω̄0
2 − ω2) + iωb

m2(ω̄0
2 − ω2)2 + ω2b2

(2.13)

where nb and nf are the density of bound and free charges respectively, ω̄0 is the

frequency of the harmonic oscillator, and b represents a frictional force, that includes

the collisions as a dissipative mechanism. In the case of rare gases we can neglect this

latter term, so we can easily find the conductivity in terms of the plasma frequency,

ω2
p = 4πnfe2/m, as

σ(ω) = i
ω2
p

4πω
(2.14)

Since matter shows more than one resonance, this simple model is not accurate

enough to reproduce the optical response of most media, therefore empirical formulas

are commonly used. The Sellmeier equation gives an empirical relationship between

the real part of the refractive index and wavelength for different media [86], and is a

development of the Cauchy’s equation for modelling dispersion. In its most general

form, the Sellmeier equation is given as

n2
r(λ) = 1 +

∑

i

Biλ2

λ2 − Ci
(2.15)

where Bi and Ci are coefficients determined experimentally, representing an absorption

resonance of strength Bi at a wavelength
√
Ci. As an example, we present the empirical

dependence of the susceptibility with the wavelength for three gases used along this

work: argon, helium and xenon [87]. In all of them, the susceptibility was calculated

at T=273 K and P=1 atm, ie, at a density of nb ) 2.7 × 1019 atoms/cm3. In the case

of argon, the susceptibility becomes

χAr
0 =

1

2π
CAr
1

(

CAr
2 λ2

CAr
3 λ2 − 1

+
CAr
4 λ2

CAr
5 λ2 − 1

+
CAr
6 λ2

CAr
7 λ2 − 1

)

(2.16)

being CAr
1 = 0.012055, CAr

2 = 0.2075, CAr
3 = 91.012, CAr

4 = 0.0415, CAr
5 = 87.892,

CAr
6 = 4.3330 and CAr

7 = 214.02. For helium,

χHe
0 =

1

2π

CHe
1

CHe
2 − λ−2

(2.17)
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being CHe
1 = 0.01470091 and CHe

2 = 423.98. Finally, for xenon the susceptibility

becomes

χXe
0 =

1

2π
CXe
1

(

CXe
2 λ2

CXe
3 λ2 − 1

+
CXe
4 λ2

CXe
5 λ2 − 1

+
CXe
6 λ2

CXe
7 λ2 − 1

)

(2.18)

being CXe
1 = 0.012055, CXe

2 = 0.26783, CXe
3 = 46.301, CXe

4 = 0.29481, CXe
5 = 50.578,

CXe
6 = 5.0333 and CXe

7 = 112.74.

Let us now study the propagation of the field in a linear isotropic medium. In this

case, the field polarization is not relevant, and we look for solutions of the scalar wave

equation of the form E(r, t) = U(r)eiωt. Substituting in the wave equation (2.5) we

obtain the Helmholtz equation for the complex amplitude, U(r),

∇2U(r) + k2U(r) = 0 (2.19)

where it is defined the wavenumber as k(ω) = k0nr(ω) being k0 = ω/c the propagation

vector of the electromagnetic field in vacuum. The simplest solution of the Helmholtz

equation in a homogeneous medium is the plane wave, U(r) = U0e−ik·r, where U0 is a

complex constant called the complex envelope and k is called the wavevector.

Assuming the plane wave to travel along the propagation axis z, the phase of the

field, φ0 = −nr,R(ω)kz+ωt (being nr,R the real part of the refractive index), travels in

time with the phase velocity, vph,

vph(ω) =
c

nr(ω)
(2.20)

If we now look at the intensity of the propagating wave,

I(z) ∝ |E(r, t)|2 = I0e
−αz (2.21)

we can define the absorption coefficient as α = 2knr,I , being nr,I the imaginary part of

the refractive index. The inverse quantity, 1/α, is known as the absorption length.

In the paraxial approximation, we may write U(r) = A(r)e−ikz, assuming that A(r)

varies slowly along the propagation coordinate z. Substituting U(r) in Eq. (2.19), and

neglecting the higher derivatives of the amplitude, we find the Paraxial Helmholtz

equation,

∇2
TA(r)− i2k

∂A(r)

∂z
= 0 (2.22)
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2.2 Propagation in linear media

where ∇2
T = ∂2/∂x + ∂2/∂y is the transverse Laplacian operator. One solution of the

Paraxial Helmholtz equation is the Gaussian beam [88],

U(r) = A0
W0

W (z)
exp

(

−
ρ2

W 2(z)

)

exp

(

−ikz − ik
ρ2

2R(z)
+ iζ(z)

)

(2.23)

with ρ =
√

x2 + y2 and where the beam parameters are

W (z) = W0

√

1 +

(

z

z0

)2

(2.24a)

R(z) = z

[

1 +
(z0
z

)2
]

(2.24b)

ζ(z) = tan−1

(

z

z0

)

(2.24c)

whereW (z) is the beam width, beingW0 the beam waist, related to the Rayleigh range,

z0, as W0 =
√

λz0/π. R(z) is the radius of curvature of the wavefront and ζ(z) is the

Gouy phase (see more at 2.3.1). The waist diameter, 2W0, is also called the spot size,

whereas twice the Rayleigh range is known as the depth of focus or confocal parameter.

On the other hand, it is also possible to find the vector solution for the Gaussian beam

[88], describing the space-dependent field polarization as

E(r) = E0

(

−x̂+
x

z + iz0
ẑ

)

U(r) (2.25)

Figure 2.1: Electric field of a Gaussian beam –real part of U(r)–, where λ=0.8 µm,

W0=1.5 µm and z0=8.8 µm.
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

2.2.2 Pulse propagation in linear media

In general, we can represent a pulsed field as a monochromatic wave modulated in

amplitude an phase by an envelope,

E(z, t) = A(z − vgt)e
i[k(z−vpht)+φCEO ] (2.26)

where vg is the group velocity and φCEO is the carrier-envelope offset. When considering

the propagation of pulses of light in dispersive media, the velocity at which the envelope

travels is different from the phase velocity. The speed with which the pulse propagates

is called the group velocity, and is given by

vg =

[

∂k(ω)

∂ω

∣

∣

∣

ω0

]−1

(2.27)

being ω0 the central frequency of the electromagnetic pulse. Both group velocity and

phase velocity are related as

1

vg
−

1

vph
=

ω0

c

∂nr(ω)

∂ω

∣

∣

∣

ω0
(2.28)

so in an ideal non-dispersive medium (refractive index independent of the wavelength),

the phase and group velocities are identical. Let us now consider the propagation of

the envelope of the pulse between two different points (z0 and z1) inside a medium.

The electric field in z0, at a time t0, is given by

E(z0, t0) = A(z0 − vgt0)e
i[k(z0−vpht0)+φCEO] (2.29)

where A(z0 − vgt0) is the envelope of the field, and vg and vph are the group and phase

velocities. On the other hand, the electric field at another point z1 is given by

E(z1, t1) = A(z1 − vgt1)e
i[k(z1−vpht1)+φCEO] (2.30)

If t1 = t0− (z1− z0)/vg, then the field amplitude at this two situations must be the

same. Therefore, multiplying and dividing by the phase of the field at t0, we can write

E(z1, t1) = A(z0 − vgt0)e
i[k(z0−vpht0)+φCEO ]eik(z1−z0)(1−vph/vg)

= E(z0, t0)e
ik(z1−z0)(1−vph/vg) (2.31)

Therefore, if vph -= vg, the envelope accumulates a carrier-envelope phase during

the propagation of the pulse. Note that, at this level of approximation, the form of the

pulse envelope form does not change due to dispersion.
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2.2 Propagation in linear media

If the pulse propagates in an absorbing medium, the pulse absorption can be suffi-

ciently well described using the absorption coefficient for the central frequency. On the

other hand, the wavenumber of the fundamental field is shifted from its vacuum value

to

k2 = k20 [1− ω2
p/ω

2
0 + 4πχ(ω0)] (2.32)

When considering electromagnetic pulses, the ionization becomes time-dependent so

the refractive index changes in time. Let us first concentrate in the effect of the increase

of the free charges in the media. In this case, the wavenumber of the fundamental field

is shifted from its vacuum value to k21 ) k20(1−ω2
p/ω

2
0), ωp being the plasma frequency

[89]. As a consequence, the time-dependent ionization will lead to a time-dependent

wavenumber, and Eq. (2.26) must be written as,

E(z, t) = A(z − vgt)e
i[
∫ z−vgt

−∞ k1(x,y,ξ,t)dξ−k0vpht+φCEO] (2.33)

The spatial phase of the field can be approximated by the integral over the propa-

gation direction

∫ z−vgt

−∞
k1(x, y, ξ, t)dξ ) k0z −

2πe2

ω0
2m

Pf (r, t− z/vg)

∫ z−vgt

−∞
n0(x, y, ξ)dξ (2.34)

being n0(r) the atomic density distribution and Pf (r, τ) the ratio for ionized electrons,

that we calculate as follows

Pf (r, τ) = 1− e−
∫ τ
−∞ wADK(r,t′)dt′ (2.35)

where wADK(r, t′) is the ionization rate, calculated from the Amosov-Delone-Krainov

(ADK) equation [33]. For hydrogen this reads

wADK(r, t′) =
2e2

π

[

3

π|E(r, t′)|

]1/2

e
− 2

3|E(r,t′)| (2.36)

Now let us turn our attention to the effect of the decrease of neutral atoms due to

ionization. As well as the effect of the free charges, the effect of the neutral atoms in the

refractive index becomes time-dependent during the electromagnetic pulse propagation.

From the equation of the wavenumber (2.32), one can derive that the phase of the

electromagnetic field is shifted as:

E(z, t) = A(z − vgt)e
i[
∫ z−vgt
−∞ k(x,y,ξ,t)dξ−k0vpht+φCEO ] (2.37)
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including the effects of the increase of free charges and the decrease of neutrals as

∫ z−vgt

−∞
k(x, y, ξ, t)dξ = k0z −

2πe2

ω0
2m

Pf (r, t− z/vg)

∫ z−vgt

−∞
n(x, y, ξ)dξ

+ 2πk0[1− Pf (r, t− z/vg)]

∫ z−vgt

−∞
χ(x, y, ξ,ω)dξ (2.38)

being χ(r,ω) the susceptibility due to the neutral atoms in the medium, whose depen-

dence on the spatial coordinate r is given by the atomic density n(r).

2.3 Propagation in non-linear media

The non-linear response of a medium induces the generation of harmonics as well as

modifications in the propagation of the fundamental field. In conventional non-linear

optics, the optical response of an isotropic medium to a monochromatic wave of fre-

quency ω0 can be described expressing the polarization as a perturbative power series

in the field strength as

P = χ(1)(−ω0,ω0)E + χ(2)(−2ω0,ω0)E
2 + χ(3)(−3ω0,ω0)E

3 + ... (2.39)

where χ(1)(−ω0,ω0) is the linear susceptibility and χ(2)(−2ω0,ω0), χ(3)(−3ω0,ω0) are

the second- and third-order non-linear susceptibilities, respectively. The even-order

non-linear processes only occur in non-centrosymmetric media [90]. As a consequence,

in atoms, the high-order harmonic generation process leads only to odd harmonics of

the fundamental field.

The main non-linear effects of the neutral media on the fundamental field are the

Kerr effect and self-phase modulation [90], both induced by the third-order suscepti-

bility. For low-density gases these effects can be neglected. On the other hand, the

time-dependent ionization, and the presence of free charges in the medium can be of

importance even in this case. Harmonic generation results from a wave-mixing process

in which the qth-order response of the material generates a new field from the com-

bination of q photons of the fundamental. For a linearly polarized field, the general

equation for the propagation of a harmonic in an isotropic medium is given by

∇2Eq(r, t) +
(qω0

c

)2
Eq(r, t) = −4π

(qω0

c

)2
Pq(r, t) (2.40)
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2.3 Propagation in non-linear media

Eq being the electric field associated to the qth-order harmonic. The polarization of

the medium can be split into linear and non-linear contributions, Pq = PL
q +PNL

q . The

linear term is the response of the atom to the propagating field of frequency qω0,

PL
q = χ(1)(−qω0, qω0)Eq (2.41)

Defining the wavenumber of the qth-order harmonic as

kq = q
ω0

c
nr,q(qω0) = q

ω0

c

√

1 + 4πnbχ(1)(−qω0, qω0) (2.42)

where nr,q is the refractive index at the harmonic frequency, equation (2.40) reduces to

∇2Eq(r, t) + k2qEq(r, t) = −4π
(qω0

c

)2
PNL
q (r, t) (2.43)

Therefore, the non-linear polarization PNL
q is the source of the harmonic field. Note

that the right hand side term is null by definition for the fundamental harmonic (q=1).

The non-linear polarization encloses all possible wave mixing processes involving the

fundamental frequency and the harmonics, that give a qω0 oscillation as a result. We

will consider here only the contribution of the driving field to the qth-order polarization,

PNL
q = χ(q)(−qω0,ω0)E

q
1 (2.44)

where E1 is the fundamental field. As a result, the qth-order non-linear polarizability

propagates with a wavenumber qk1.

The interference of the linear and non-linear response leads to a space-dependent

enhancement or suppression of the polarizability. For instance, for a Gaussian beam

focused in vacuum, the qth-order polarizability is given by

Pq = PL
q + PNL

q =

χLA(z)e
−ikqz−ikq

ρ2

2R(z)+iζ(z)
+ χNLA

q(z)e
−iqω0z/c−iqω0/c

ρ2

2R(z)+iqζ(z) )

e−i(kq−∂ζ(z)/∂z)z

(

χLA(z)e
−ikq

ρ2

2R(z) + χNLA
q(z)e

i∆kqz−iqω0/c
ρ2

2R(z)

)

(2.45)

where we have defined the phase-mismatch along the propagation direction as ∆kq =

kq−qω0/c+(q−1)∂ζ(z)/∂z. In general, the phase-mismatch is defined as∆kq = kq−qk1,

and takes into account other contributions to the polarizability. In Fig. 2.2 we plot an

example of the spatial distribution of (a) the linear polarization PL
q , and (b) the total

polarization Pq, for a Gaussian beam. As can be seen, the interference of the linear
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

and non-linear response to the harmonic field causes the vanishing of the polarizability

at some spatial regions. The harmonic generation is, therefore, confined to the bright

regions in between, whose characteristic size is the coherence length, defined as

Lcoh
q =

∣

∣

∣

∣

π

∆kq

∣

∣

∣

∣

(2.46)

The optimal harmonic yield from the macroscopic target is obtained when the the linear

and non-linear polarization waves have their phases matched, i.e. when ∆kq = 0.

Figure 2.2: a Absolute value of the linear polarization, PL
q for the 37th harmonic in a

Gaussian beam of parameters λ=800 nm, W0=1.5 µm, and z0=8.84 µm. In plot b we

show the absolute value of the total polarization, Pq = PL
q + PNL

q . The parameters used

in these plots are unrealistic for the sake of clarity, the susceptibilities being χL = 1 and

χNL = 0.5, the refractive indexes n1=1.0001 and n37=1.005, and A0=1.

Let us now introduce a very simple model that we will use in the following to explore

the different aspects of phase-matching. We shall consider two atoms, located at the

propagation axis of a plane wave (see Fig. 2.3, where the two atoms are located at

z1 and z2). If we place a detector at a distance zD, the field there corresponds to the
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2.3 Propagation in non-linear media

interference of the fields generated at each atom, and propagated to the detector, i.e.

Edet = eiqk1z1eikq(zD−z1) + eiqk1z2eikq(zD−z2) ∝ cos(∆kqL/2) (2.47)

where L = z2 − z1 and ∆kq is the phase-mismatch. With this simple model, we can

easily verify that the coherence length is the distance between two atoms whose emitted

radiation interferes destructively, as it is sketched in Fig. 2.4.

Figure 2.3: Scheme of our simple model to study phase-matching. The harmonic radiation

is generated by two atoms at positions z1 and z2. The detector is located at the coordinate

zD.

Figure 2.4: Scheme of one-dimensional phase-matching of harmonic radiation generated

at different atom positions. The radiation emitted from the atoms located at z1 and z2
interferes destructively, so the coherence length corresponds to their separation.
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

In a typical experiment of HHG, the phase-mismatch function has four main con-

tributions:

∆kq ) ∆kgeomq +∆kfq +∆kbq +∆kintq (2.48)

where ∆kgeomq results from the spatial phase variations arising from the focusing ge-

ometry, ∆kfq is associated to the presence of free charges in the medium, ∆kbq is due to

the polarization of the neutrals and ∆kintq corresponds to the harmonic phase, intrinsic

to the generation process.

As we will see later in this chapter, phase-matching is automatically included in

our calculations, as we solve the wave equation numerically. We, however, assume

that the phase velocity of the harmonic field is that of the vacuum, although we in-

clude the possibility of absorption. Let us now explore the different contributions to

phase-matching in order to, first, have a in-depth understanding of the process that

otherwise remains hidden in our exact computation and, second, to demonstrate that

the assumption for the harmonic field phase velocity is essentially correct. We shall

study those contributions separately in the following subsections.

On the other hand, it is a challenge to define experimental conditions in which the

mismatch is reduced to a minimum. Even under optimal phase-matching conditions,

the efficiency of the harmonic generation can be strongly limited by the absorption in

the medium. In section 2.3.4 we shall address the phenomenon of harmonic reabsorption

whereas in 2.3.5 we will analyze a technique for achieving this optimal phase-matching

condition (∆kq ) 0) in a hollow waveguide.

2.3.1 Geometrical contributions to phase-matching

Now we study the contributions to the phase-matching arising from the characteristics

of the experimental setup (focusing geometry and detection angle). Therefore, we

decompose the geometrical phase-mismatch factor as:

∆kgeomq ) ∆kGouy
q +∆kangleq (2.49)

where ∆kGouy
q is the contribution of the Gouy phase of a Gaussian beam, and ∆kangleq

results from the detection of the harmonics at different divergence angles.
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2.3 Propagation in non-linear media

Gouy phase

A Gaussian beam propagating through its focus experiences a π phase-shift with respect

to a plane wave, known as the Gouy phase [91]. As described by Eq.(2.24c), the spatial

dependence of the Gouy phase has the form ζ(z) = tan−1 (z/z0). Assuming a narrow

target, we may approximate the Gouy phase linearly, therefore resulting in a correction

to the propagating vector for the fundamental field, k1 = ω0/c− dζ/dz ) ω0/c− 1/z0,

and for the generated harmonic kq = qω0/c − dζ/dz ) qω0/c − 1/z0. Therefore the

phase-mismatch can be approximated to

∆kGouy
q = kq − qk1 =

q − 1

z0
(2.50)

Since ζ(z) is antisymmetric with respect to the focus, phase-matching conditions

when the target is located before and after the focus will become substantially different.

Moreover, the more focalized is the beam, the more important is the effect of the Gouy

phase, and on the reverse, we can neglect this effect for targets whose width is very

short compared to the Rayleigh distance of the beam.

Figure 2.5: Effect of the Gouy phase (blue line) in the carrier-envelope phase during

the pulse propagation. The waveform of the electric field changes from an initial cosine

function at z << 0, to a sine function in the focus position (z = 0), and a minus cosine

function at z >> 0. The spatial variation becomes significant within the Rayleigh range

(from −z0 to z0).
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2. COMPUTING HIGH-ORDER HARMONIC PROPAGATION

In addition to phase-matching, the effect of the Gouy phase is also specially signif-

icant for few-cycle pulses, as modifies the carrier-envelope phase [92]. In Fig. 2.5 we

can observe how the Gouy phase shifts the carrier-envelope phase continuously through

one Rayleigh distance around the focus: the waveform of the electric field changes from

an initial cosine function at z << 0, to a sine function in the focus position (z = 0),

and a minus cosine function at z >> 0.

Angle of detection

The harmonics radiated from the atoms located at different places in the target travel

to the detector through different optical paths. The relative difference between those

paths changes with the angle of detection. For the sake of simplicity, let us consider

again the two-atom model presented before (see Fig. 2.6). If we consider off-axis

detection under an angle θ, then

Edet = eiqk1z1eik
′
q(zD−z1) + eiqk1z2eik

′
q(zD−z2) ∝ cos(∆k′q)L (2.51)

where

k′q = kq cos θ ) kq −
qω0

2c
θ2 (2.52)

Figure 2.6: Scheme of phase-matching considering two different atoms in the target, when

the radiation is detected at an angle θ from the propagation axis.

The phase-mismatch function now becomes

∆kangleq = kq − qk1 = −
qω0

2c
θ2 (2.53)
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2.3 Propagation in non-linear media

As we will see in the next chapter, the angle of detection plays an important role

when selecting short and long trajectory contributions from the high-order harmonic

generation process.

In conclusion, once we have included the effect of the Gouy phase and the angle of

detection, we can rewrite Eq. (2.49) as

∆kgeomq )
q − 1

z0
−

qω0

2c
θ2 (2.54)

2.3.2 Contribution of free charges and neutrals to phase-matching

The contributions of free charges and neutrals can be treated similarly by considering

them the result of quantum transitions between free states or between bound states,

respectively. For low-density media we use the approximation form (2.11)

nr ) 1 + 2π(χb + χf ) (2.55)

being χb and χf the susceptibilities associated with neutrals and free charges, respec-

tively. The phase-mismatch associated to each of these contributions alone can be

written as

∆kiq = kq − qk1 =
2π

λq
[nr(λq)− nr(λ0)] )

4π2

λq
[χi(λq)− χi(λ0)] (2.56)

where the label i corresponds to f in the case of free charges, and b in the case of

neutrals. Therefore, the coherence length of each process can be estimated as

Lcoh
q,i =

∣

∣

∣

∣

π

∆kmat
q

∣

∣

∣

∣

=

∣

∣

∣

∣

λq

4π

1

χi (λ0)− χi (λq)

∣

∣

∣

∣

(2.57)

In the following, we will see that χi(λq) / χi(λ0), therefore the linear propagation

of the harmonic can be considered as in vacuum, while the phase-mismatch is mainly

due to the up-conversion of the phase accumulated by the fundamental field during its

propagation.

Free charges: effect of free-free transitions

From Eq. (2.57), the coherence length due to the effect of the free charges in the

material is given by

Lcoh
q,f =

∣

∣

∣

∣

λq

4π

1

χf (λq)− χf (λ0)

∣

∣

∣

∣

(2.58)
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where the susceptibility associated to the free-free transitions corresponds to, χf =

−ω2
p/(4πω

2), being ωp the plasma frequency, which is expressed as ω2
p = 4πnfe2/m,

and being nf , the density of free electrons. Therefore, the coherence length due to

free-free transitions reads as

Lcoh
q,f =

∣

∣

∣

∣

qπmc2

e2nfλ0(q2 − 1)

∣

∣

∣

∣

(2.59)

In Table 2.1 we show the coherence lengths for three different situations: high-order

harmonic generation driven by vacuum ultraviolet, –VUV (267 nm)–, near-infrared –

near-IR, (800 nm)– and mid-infrared –mid-IR, (3.9 µm)– laser sources. The harmonic

orders considered in each case are the 11th, 27th and 5000th respectively. We use three

different atomic densities for the target, 1018, 1019 and 1020 atoms/cm3, and assume

typical ionization levels of 10% (VUV), 5% (near-IR) and 0.1% (mid-IR). For instance,

assuming a 5% ionization during the pulse propagation of harmonics generated by

near-IR laser sources in a gas jet of 1018 atoms/cm3, the effect of free charges in the

propagation of the 27th harmonic begins to be relevant at propagation lengths above

approximately 1 mm.

!
!
!
!
!
!!

λ

nb
1018at/cm3 1019at/cm3 1020at/cm3

VUV (267 nm, q = 11, Pi = 10%) 3.829 mm 382.9 µm 38.29 µm

NIR (800 nm, q = 27, Pi = 5%) 1.034 mm 103.4 µm 10.34 µm

MIR (3.9 µm, q = 5000, Pi = 0.1%) 57.2 µm 5.72 µm 572 nm

Table 2.1: Coherence length due to free-free transitions for the propagation of the

qth-order harmonic of a fundamental field of wavelength λ, through a medium of density

nb, assuming a ionization ratio Pi (nf = Pinb), in three different regimes of HHG.

We shall now see that the effect of the free-free transitions in the linear propagation

of the high-harmonic is negligible, i.e. χf (λq) << χf (λ0). In this case, the phase-

mismatch becomes ∆kfq ) −4π2

λq
χf (λ0), and Eq. (2.59) can be approximated as

Lcoh
q,f )

∣

∣

∣

∣

πmc2

e2nfqλ0

∣

∣

∣

∣

(2.60)

With this approximation, the values of the coherence lengths of table 2.1 are reduced

in less than 1% at 267 nm and 0.1% at 800 nm. In the mid-IR regime (3.9 µm), there is

no appreciable variation. Therefore, we demonstrate that propagation of the harmonic

field can be approximated to the vacuum.
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2.3 Propagation in non-linear media

Neutrals: effect of bound-bound transitions

From Eq. (2.57), the coherence length due to the effect of the bound-bound transitions

in the material is given by

Lcoh
q,b =

∣

∣

∣

∣

λq

4π

1

χb (λq)− χb (λ0)

∣

∣

∣

∣

(2.61)

In the absence of resonances, we can estimate χb according to the perturbative formula

[93],

χb )
nbe2

m

f12
ω2
12 − ω2

(2.62)

where nb is the density of atoms in the ground state, 1 labels the ground state, 2 the

final level of the lowest energetic transition, and f12 the oscillator strength. Then, the

coherence length due to bound-bound transitions corresponds to

Lcoh
q,b =

∣

∣

∣

∣

∣

πmc2λq

e2nbf12λ4
12

(

λ2
0 − λ2

12

) (

λ2
q − λ2

12

)

λ2
q − λ2

0

∣

∣

∣

∣

∣

(2.63)

If we consider the 1s−2p transition of the hydrogen atom, f12 = 0.1388 and λ12 = 121.5

nm [94]. In Table 2.2 we compute the coherence length for the three cases analyzed

in this section. As an example, in the propagation of harmonics generated by near-IR

laser sources in a gas jet of 1018 atoms/cm3, the effect of neutrals in the propagation of

the 27th harmonic for the example above begins to be relevant at propagation lengths

above approximately 150 mm. Note that depending on the element, the effect of the

neutrals can be relevant even at lower densities, near absorption edges.

!
!
!
!
!
!!

λ

nb 1018at/cm3 1019at/cm3 1020at/cm3

VUV (267 nm, q = 11) 1.01 cm 101 mm 10.1 mm

NIR (800 nm, q = 27) 1.48 cm 148 mm 14.8 mm

MIR (3.9 µm, q = 5000) 424 µm 42.4 µm 4.24 µm

Table 2.2: Coherence length due to bound-bound transitions in the propagation

of the qth-order harmonic of the fundamental field of wavelength λ, through a hydrogen

gas medium of density nb, for the typical cases considered in this thesis.

Since the frequency of the harmonic, qω0, is greater than the ionization potential,

the bound-bound transitions will mainly affect the propagation of the fundamental field
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and not the harmonic, χb (λq) << χb (λ0), and thus Eq. (2.63) can be approximated

as

Lcoh
q,b )

∣

∣

∣

∣

∣

πmc2λq

e2nbf12

(

λ2
12 − λ2

0

)

λ2
0λ

2
12

∣

∣

∣

∣

∣

(2.64)

With this approximation, the values of the coherence lengths of Table 2.2 are increased

in less than 3% at 267 nm and 5% at 800 nm. In the mid-IR regime (3.9 µm), there is

no appreciable variation. Therefore, as in the case of free charges, the influence of the

neutrals in the linear propagation of the high-order harmonics can be neglected.

2.3.3 Intrinsic phase-matching

The intrinsic phase corresponds to the phase of the harmonics generated assuming a

driving field unaffected by propagation. In section 1.2.2 we already discussed that each

harmonic is mainly produced by two recollision paths. Each trajectory contribution

has associated a phase given by the semiclassical action acquired during the excursion

time (1.35). This phase is proportional to the laser intensity through a factor αi
q, that

depends on the particular trajectory (i) followed by the ionized electron. Therefore,

the phase of the qth-order harmonic can be written as φi
q ) −αi

qI.

The contribution of the intrinsic phase to the mismatch function is therefore given

by the spatial dependence of the laser pulse intensity, i.e.

∆kintq = kq − qk1 )
∂αi

q

∂I

∂I

∂z
I + αi

q
∂I

∂z
(2.65)

If the harmonic falls in the plateau region for the intensity range considered along the

propagation axis, one can approximate ∂αi
q/∂I ) 0, i.e., the excursion time of the

electron does not change with the intensity, thus following the same trajectory. In that

case, the phase-mismatch can be reduced to

∆kintq ) αi
q
∂I

∂z
(2.66)

being higher for long trajectories rather than short, as (αL
q > αS

q ).

2.3.4 Absorption

Phase-matching plays a very important role in the efficiency of the generation of high-

order harmonics. In principle, if one could achieve perfect phase-matching, the har-

monic yield would increase monotonically with the target size. Nevertheless, even in
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this case, the final efficiency would be limited by the absorption in the medium. In HHG

driven by near-infrared laser sources, the radiation is emitted in the extreme ultraviolet

(EUV) region of the spectrum, where the majority of gases are absorbing. Therefore,

reabsorption of the harmonics saturates the efficiency of the harmonic generation [95].

In order to estimate the absorption length, we resort in the theoretical and exper-

imental results available in the literature [96, 97, 98]. The absorption length can be

defined as Labs = 1/(σnb), where nb is the gas density and σ is the photoabsorption

cross section. In table 2.3 we present the absorption lengths for hydrogen, helium,

argon and xenon calculated from [96, 97, 98]. For example, the absorption length for

the 27th harmonic driven by a 800 nm laser, in a gas of density 1018 atoms/cm3 is 3.5

mm for helium, 4.5 mm for argon and 5 mm for xenon.

Gas
!
!
!
!
!
!!

λ

nb 1018at/cm3 1019at/cm3 1020at/cm3

VUV (267 nm, q = 11) 6.73 cm 6.73 mm 0.673 mm

H NIR (800 nm, q = 27) 3.73 cm 3.73 mm 0.373 mm

MIR (3.9 µm, q = 5000) 3.86 km 386 m 38.6 m

VUV (267 nm, q = 11) 1.00 cm 1.00 mm 100 µm

Ar NIR (800 nm, q = 27) 4.57 mm 457 µm 45.7 µm

MIR (3.9 µm, q = 5000) 15.4 cm 1.54 cm 2.54 mm

VUV (267 nm, q = 11) 5.44 mm 544 µm 54.4 µm

He NIR (800 nm, q = 27) 3.51 mm 351 µm 35.1 µm

MIR (3.9 µm, q = 5000) 111 m 11.1 m 1.11 m

VUV (267 nm, q = 11) 7.35 mm 735 µm 73.5 µm

Xe NIR (800 nm, q = 27) 5.07 mm 507 µm 50.7 µm

MIR (3.9 µm, q = 5000) 12.7 mm 1.27 mm 127 µm

Table 2.3: Absorption lengths for H, Ar, He and Xe atoms computed from data

extracted from [96, 97, 98].

Nevertheless, we have to be careful with estimations of table 2.3, as the absorption

may vary significantly with the photon energy due to the presence of absorption edges.

For example, argon presents resonances in the EUV region that can lead to total ab-

sorption of harmonics below 23rd [99]. In figure 2.7 we plot the transmission after 500

µm propagation through a gas of density 1018 atoms/cm3 for hydrogen (pink), argon

(green), helium (blue) and xenon (red) gases (data extracted from [98]). We observe
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that the reabsorption of harmonics below the 25th (800 nm) is very significant in argon

and xenon, so depending on the desired photon energy, the election of the medium is

critical.

Figure 2.7: Transmission through 500 µm of a gas with density 1018 atoms/cm3 in the

case of hydrogen (pink), argon (green), helium (blue) and xenon (red). We indicate the

energy of the15th, 25th and 35th harmonics for a 800 nm driving laser. Data obtained

from [98].

2.3.5 Optimal phase-matching

One of the challenges to obtain efficient high-order harmonics is the achievement of

optimal phase-matching conditions, i.e. ∆kq ) 0 [100]. Typically, optimal phase-

matching corresponds to a coherent length longer than the medium length. In the

absence of perfect phase-matching, quasi-phase-matching (QPM) techniques have been

successfully used by periodically readjusting the relative phase between the fundamental

and non-linear radiation in intervals corresponding to the coherence length [101, 102,

103, 104, 105, 106].

Kapteyn and Murnane proposed an alternative technique for achieving optimal

phase-matching conditions in a hollow waveguide [42, 99]. The driving laser is focused

into a gas-filled hollow waveguide, which ensures a non-diverging, near-plane-wave,

propagation [42]. As a consequence, in terms of phase-matching, one avoids the effect
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of the Gouy phase and that of the variation of the intrinsic phase of the harmonics,

as the laser peak intensity is constant along the direction of propagation. Therefore,

phase-matching is given by the two surviving contributions: the effect of free charges

and neutral atoms. The phase-mismatch function then becomes

∆kwaveguide
q ) −

4π2

λq
[χf (λ0) + χb(λ0)] ) q

(

nfe2λ0

mc2
−

4π2nbχ0
b

λ0η0

)

(2.67)

where, with this approximation, the bound charge susceptibility χ0
bb, is calculated at a

density η0 using the empirical Sellmeier equation (2.15). The free and bound charge

densities can be expressed in terms of the ionization probability Pf and the atomic

density n0 as nf = Pfn0 and nb = (1− Pf )n0.

Since the contributions of the free charges and neutrals are opposite in sign in Eq.

(2.67), they can compensate to achieve perfect phase-matching, i.e. ∆kq = 0. Imposing

this condition to Eq. (2.67) we find the optimal ionization probability as

P opt
f =

χ0
b

η0

(

e2λ2
0

4πmc2
+

χ0
b

η0

)

(2.68)

As the ionization probability depends on the intensity of the driving field, Eq. (2.68) de-

scribes an optimal intensity for each wavelength that will ensure perfect phase-matching

along the waveguide. Since the ionization probability is time-dependent, the optimal

phase-matching is a transient condition.

Let us now look at the driving electric field at consecutive positions along the

waveguide in a frame moving with the phase velocity. In Fig. 2.8 we represent an 800

nm electric field at the entrance (light red line) ant at the output (dark red line) of a

hollow waveguide 8 mm in length, filled by a helium gas of density 1019 atoms/cm3,

treating separately the effects of neutrals and free charges. In 2.8a, where only neutrals’

effects are considered, the phase of the electric field is shifted in the waveguide, due

to the refractive index of the gas. On the other hand, if only free charges’ effects are

considered (see 2.8b) the time-dependent ionized population imprints a negative chirp

in the propagated electric field.

If we now take into account both the effect of neutrals and free charges in the

propagation of the fundamental field, we can choose an intensity to fulfill perfect phase-

matching conditions at the peak of the laser pulse, as can be observed in Fig. 2.8c.

As a consequence, there is a temporal window in which the optimal phase-matching
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Figure 2.8: Electric field at the input (light red) and at the output (dark red) of a

hollow waveguide considering a only neutral’s effects, b only free charges’ effects, and c

both of them. The hollow waveguide is 8 mm in length, and filled by a helium gas of

density 1019 atoms/cm3. The laser pulse envelope is modeled as a sin2 function, 8 cycles

full temporal length (2.9 cycles FWHM). The laser wavelength is 800 nm, whose optimal

phase-matching intensity is 7.2× 1014 W/cm2. The neutrals effect produce a temporarily

constant phase shift in the electric field (panel a), whereas free charges due to ionization

imprints a negative chirp (panel b). In plot c, where both effects are considered, there is

a temporal region in which optimal phase-matching conditions are achieved.
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conditions holds. The width of this temporal window depends on the density (or

pressure) of the gas inside the waveguide.

In Fig. 2.9 we plot the intensity for achieving perfect phase-matching inside a

helium-filled waveguide versus the wavelength (from VUV to mid-IR). Optimal phase-

matching conditions are fulfilled at the central part of the driving laser pulse. We

can observe that the optimal intensity decreases when increasing the wavelength. This

technique was recently used in the obtention for the first time of keV X-rays from HHG

driven by mid-IR laser sources [20], where a laser pulse of 3.9 µm in wavelength and

peak intensity of ) 3× 1014 W/cm2 was used.

Figure 2.9: Optimal intensity for achieving perfect phase-matching inside a helium-filled

waveguide at the central part of a driving laser pulse, whose envelope is modeled as a sin2

function, with 8 cycles full length duration (2.9 cycles FWHM).
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2.4 Integral solution of the wave equation: A numerical

method for computing high-order harmonic propaga-

tion

The details for the computation of high-order harmonic propagation have been stud-

ied extensively, for instance, by Anne L’Huillier’s group [37, 82, 83]. Their approach

consists in applying the paraxial approximation and the slowly varying envelope ap-

proximation to the wave equation, thus obtaining the differential equation (2.43), that

is solved for each frequency component. Other groups have extensively used this ap-

proach for their computations of high-order harmonic propagation [107, 108, 109].

We have developed an alternative method in which, instead of solving numerically

Eq. (2.5), we consider its integral solution [89]: E(r, t) = E0(r, t) + Ei(r, t), where

E0(r, t) is the external field as it propagates in vacuum, and Ei(r, t) is the field radiated

by the accelerated charges in the target,

Ei(r, t) = −
1

c2

∫

dr′
1

|r− r′|

[

∂

∂t′
J⊥(r

′, t′)

]

t′=t−|r−r′|/c

(2.69)

Note that this expression assumes the generated radiation to propagate with the vac-

uum velocity (c) for all frequencies. We have seen before in this chapter that this is

a reasonable assumption for the high-order harmonics. However, the above formula

can not be applied for the propagation of the fundamental field. For this case, the

differential equation should be used (2.43), which for the fundamental field assumes a

linear response of the medium.

From the microscopic viewpoint, we may decompose the target into a discrete sum

of elementary contributions, associated to each charge in the sample. The transversal

far field radiated by the jth charge, placed at point rj in the target, can be found from

(2.69) and reads as [89],

Ej
i (rd, t) =

1

c2
qj

|rd − rj(0)|
sd × [sd × aj (t− |rd − rj(0)|/c)] (2.70)

where aj is the charge’s acceleration, evaluated at the retarded time, and sd is the

unitary vector pointing to a virtual detector located at rd (see figure 2.10). Note

that we are using the dipole approximation, as the charge displacement during the

interaction is assumed to be small in comparison to the wavelength of the radiation
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field (including its harmonics), therefore rj(t) ) rj(0). This condition is fulfilled in

atomic gas targets, as harmonics are generated by charges in the vicinity of the parent

ion.

Figure 2.10: Scheme of our method to compute high-order harmonic propagation. The

target (a gas jet) consists on a discrete number of elementary radiators, each placed at a

coordinate rj . The detection of the radiation takes place at a distance |rd| from the center

of the target, O, using elementary detectors, each one characterized by the angle θd. For

each of these detectors we consider a temporal array where the field contributions emitted

by the different radiators are added.

In order to compute the charge’s acceleration at the retarded time, aj(t − |rd −

rj(0)|/c) we have to take into account the position of each charge in the sample, as well

as the angle of detection. As shown in Fig. 2.10, our detection scheme consists on a

discrete number of far-field angular detectors placed at a distance |rd| from the center

of the sample, O, and at a certain angle θD respect to the propagation direction z. To

compute the final phase at the detector, we consider the total time delay as the sum

of the delays of the fundamental field reaching the elementary radiator position (tpre)

and the delay of the harmonic field when propagating from the radiator to the detector

(tpost). Following the coordinate system described in figure 2.10, we can compute each

propagation time as:

tpre,j = zj/vg (2.71)

tpost,j = (|rd|− rj · sd)/c (2.72)
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where vg is the group velocity –see Eq. (2.27)–. As a reference, we define the prop-

agation times for a charge placed at the center of the sample, O, as tpre,0 = 0 and

tpost,0 = |rd|/c. For any other charge j, we can define the time of arrival to the detec-

tor as

τj = tpre,j + tpost,j = zj/vg + (|rd|− rj · sd)/c (2.73)

To compute the total harmonic yield, we sum up the radiation from the different

charges at the target, propagated to the detector position. For each detector we create

a large temporal array, placing the radiation emitted at a charge j corresponding to its

time τj. As a reference, the radiation emitted from an emitter placed at the center of

the target, O, is placed at the center of each detector array. Then, for each charge j,

we compute the temporal delay relative to this central emitter as δj = τ0 − τj , where

τ0 = tpre,0 + tpost,0. Since the array defined at the detector consists on a set of discrete

time values, n × ∆t, we need to accommodate the delays to this temporal grid (see

Fig. 2.11). We do this in two steps: first we find the point in the grid i which is

closest to the actual time delay τj. Since this time delay will not be exactly a point

of the temporal grid, there is a residual temporal delay ∆τj = τj − i∆t that is not

properly taken into account. Therefore, in a second step, we correct for this remaining

difference, by Fourier transforming the emitter’s field signal at the detector’s array and

multiplying the resulting spectrum by the phase shift eiω∆τj . With this last step, we

ensure a smooth representation of the field delays in the detector array. Otherwise, the

round of the actual delay to the closest point in the temporal grid will add noise to the

final spectrum.

Our integral method takes into account automatically the geometrical contributions

to the phase-matching of the harmonics. On the other hand, the contributions to

phase-matching given by the intrinsic phase of the harmonic generation process, are

also present as a result of the single-atom HHG computation. The single-atom module

in our code uses the SFA+ (see section 1.3) to compute the dipole acceleration.

From the previous section (see tables 2.1, 2.2) we see that the most relevant effects

in the propagation of the fundamental field are the dephase generated by the presence

of free charges, and the neutral atoms. Table 2.1 points out the necessity of including

plasma effects in the propagation of the fundamental field, if one wants to consider

propagation lengths of the order of one centimeter (near-IR regime). For that reason
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Figure 2.11: Description of the temporal array at the detectors. The blue line represents

the envelope of the radiation arriving from the virtual charge placed at the center of the

target, O, whereas the red line corresponds to the radiation from a charge j. In a first step

the latter one is placed at the position of the array corresponding to i∆t, but, in order to

retain the whole information about the temporal propagation, the envelope is afterwards

multiplied by eiω∆τj in the spectral domain.

we include the change in the phase of the fundamental field as described in Eq. (2.34),

using the ADK theory to compute the ionization probabilities –see Eq. (2.36)–.

On the other hand, table (2.2) points out the necessity of including the effect of

neutral atoms in the propagation of the fundamental field if, for example, one wants to

consider propagation lengths of the order of 1 mm at densities of 1019 atoms/cm3 in

the near-IR regime in hydrogen. Depending on the element, the effect of the neutrals

can be relevant even at lower densities, near absorption edges. In addition, the disper-

sion induced by the neutral atoms in the fundamental field is specially important in

waveguide geometries [104, 110]. We include this effect in the fundamental field using

the Sellmeier formula presented in Section 2.2.1 for different gases, taking into account

that the gas jet is inhomogeneous and that the neutral density is time-dependent –see

Eq. (2.38)–.

Once we have included the contributions to the refractive index due to the free

charges and the neutral atoms, we also take into account the possibility of a group

velocity different from the phase velocity, as explained by Eq. (2.66). Finally, we

include absorption of the harmonics using Beer’s law [98].
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2.5 Discrete Dipole Approximation

2.5.1 Theoretical model

Even for low pressure densities (1018 atoms/cm3), the number of target radiators in a

typical interaction region is extremely high (of the order of 1012). This means that,

despite the use of efficient models for the computation of the single-atom dipole ac-

celeration, the evaluation at every single radiator of the target becomes a formidable

task. To overcome this limitation we shall use the Discrete Dipole Approximation

(DDA) [111, 112], where the interaction volume is split into discrete spherical cells,

each containing a macroscopic number of elementary radiators. Next we will see that it

is possible to give a compact formula for the radiation of a finite cell, provided we know

the dipole acceleration of an atom at its center. Therefore, for every macroscopic cell

we will need only to compute one single-atom response. As the number of cells required

to map the whole target is reasonable (about 105), this method reduces drastically the

load of in computing macroscopic HHG.

In order to find an expression for the radiation of a finite spherical cell, the following

conditions should be met:

(i) The number of dipoles enclosed in each cell is large enough to approximate the

density by a continuous distribution. We shall then define a lower limit for the cell’s

size to enclose about 10 dipoles in each dimension, i.e. d > 10 × [1/n(rj)]
1/3, d being

the cell’s diameter, n(rj) the atomic density, and rj the coordinate of the cell’s center.

For a gas density of 1018 atoms/cm3, this lower limit is about 100 nm.

(ii) To avoid parasitic diffraction we shall circumvent the definition of sharp edges

at the cell limits, defining the cell as a localized Gaussian distribution, n(rj)Vcellg(r′)

(Vcell being the cell’s volume), with

g(r′) =
π3/2

σ3
e−r′2/σ2 (2.74)

If we define the cell diameter, d, at the FWHM of the density distribution, σ is related

to the diameter as d = 2σ
√
ln2. On the other hand, r′ is a coordinate on the local

reference frame with origin O′ at cell’s center rj (see Fig 2.12).

(iii) The size of the cells is small enough to approximate the external field as a

local plane wave with a uniform intensity distribution in the cell’s volume. Denoting

W0 a characteristic length for the variation of the intensity distribution of the external
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Figure 2.12: Scheme of the finite-size cell considered for the Discrete Dipole Approxima-

tion implementation. The direction towards the detector is defined by the vector sd. The

local reference frame has its origin O′ at the cell’s center, rj , and it is oriented so that the

z′ axis coincides with the propagation direction of the local plane-wave field, and sd has

no y′ component.

field, we shall define the upper limit of the cell’s diameter as d < 2W0/10. For the

numerical results presented later in this section, we consider a Gaussian beam (see Eq.

2.23) whose beam waist is W0 = 30 µm and, therefore, the cell’s diameter d should not

exceed 6 µm.

(iv) The total number of cells is determined by the ratio between the interaction

region and the cell’s volumes: Nc ) Vint/Vcell. In the practical case, however, the

choice of the cell’s location can be determined by a Monte Carlo method using the

target’s density distribution. Therefore, the computation can be stopped at any time,

according to convergence criteria, before scanning the total number of cells.

Denoting E1(rj , t) the fundamental field at the center of the cell j, and assuming

it as a local plane wave, the field at any neighbor point r′ can be approximated by

E1(rj , tr′), with tr′ the temporal lag associated to the distance from this point to

O′. Since we choose the z′ axis as the propagation direction of the local plane-wave,

tr′ = t− z′/c, the total field at the detector position rd emitted by a single cell is given
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by Eq. (2.70) as

Ei,j(rd, t) )
n(rj)

c2|rd|

∫

dr′g(r′)sd ×
[

sd × a

(

rj , t−
z′

c
−

|rd − r′ − rj |
c

)]

(2.75)

where a(rj , t) is the dipole acceleration of an atom at O′, that can be computed using

the SFA+ approach. Note that this is a simplified form of the Mie rescattering theory

[113], where the cells have diffused contours and, therefore, we do not include reflex-

ions. In addition, in contrast to Mie theory, we assume the local propagation of the

electromagnetic field inside the cell as a local plane wave.

For the case of isotropic radiators, the direction of the vector a(rj, t) is that of

the driving field’s polarization. The detector is assumed to be at an arbitrarily large

distance from the interaction region, |rd| >> |rj | (see Fig. 2.13).

Figure 2.13: Scheme of the high-order harmonic experiment considered in this section,

where a Gaussian beam is focused near the center of a gas jet. The coordinate origin, O,

is located at the laser focus and the jet position is moved along the z axis.

With these assumptions, Eq. (2.75) can be integrated in the temporal frequency

domain

Ei,j(rd,ω) )
n(rj)

c2|rd|

∫

dr′g(r′)sd ×
[

sd × a(rj ,ω)e
iω( z

′

c
+

|rd−r′−rj |

c
)

]

(2.76)
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Dropping constant terms, we have

Ei,j(rd, t) ∝ n(rj)sd ×
[

sd × a(rj ,ω)e
−iω

|rd−rj |

c F (θd,j ,ω)

]

(2.77)

where F (θd,j ,ω) is a form factor defined as

F (θd,j ,ω) = lim
|rd|→∞

∫

dr′g(r′)eiω(
z′

c
−

|rd−r′−rj |

c
+

|rd−rj |

c
)

=

∫

dr′g(r′)ei
ω
c
(z′−sd·r

′) (2.78)

where sd is the unitary vector pointing to the detector direction, and sd · ez′ = cosθd,j,

according with the chosen orientation of the local reference frame (see figure 2.12). Us-

ing the Gaussian distribution (2.74), the integral in (2.78) can be evaluated analytically,

giving as a result

F (θd,j ,ω) ∝ e
1
2

ω2

c2
σ2(1−cos θd,j) (2.79)

θd,j being the angle between the detector position and the propagation vector of the

local field at the cell j. Note that Eq. (2.77) corresponds to the field emitted by a

single radiator located at the cell’s center rj , modulated by a form factor F (θd,j ,ω)

that takes into account the interfering contributions of the rest of the radiators in the

macroscopic cell. In order to obtain the angle θd,j, we compute cos(θd,j) = kj · sd,

being kj the propagation vector of the local plane wave at the cell j. We assume

the same propagation vector along the cell, whose value is computed at its center as

kj = ∇φ/ |∇φ|, being φ the phase of the incident field at the center of the sphere.

Figure 2.14 shows the angular distribution of the high-order harmonic radiated

spectra, in linear scale, (a) for a single radiator, and for cells of diameters (b) 10 nm,

(c) 50 nm and (d) 500 nm. The radial axis corresponds to the harmonic order (starting

at the 21st), whereas the angular scale is represented in degrees, θ = 0 corresponding

to the direction of propagation of the local plane wave fundamental field. Note that,

as the cell’s size increases, phase-matching is progressively restricted to the forward

direction.
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Figure 2.14: Angular distribution of the radiation spectra, in linear scale, a for a single

radiator, and cells of b 10 nm, c 50 nm and d 500 nm diameter. The radial axis corresponds

to the harmonic order (starting at the 21st). The angles are represented in degrees, θ = 0

corresponding to the direction of propagation of the local plane wave fundamental field.

The 800 nm laser pulse envelope is modeled as a sin2 function 8 cycles full temporal length

and peak intensity 1.57× 1014 W/cm2.

2.5.2 Convergence and results

Let us now present some results of our calculation for the model experiment depicted in

Fig. 2.13. We consider a low-pressure hydrogen gas jet interacting with an 800 nm laser

pulse of 8 cycles (full temporal length) with a peak intensity of 1.57×1014 W/cm2. For

the description of the laser pulse, we have considered a Gaussian beam propagating in

vacuum, but including the effect of the ionized electrons in the refractive index –as in

Eq. (2.33)–. The beam waist is W0 = 30 µm, and hence the Rayleigh range is z0=3.5

mm. We shall define z = 0 as the focus position in the propagation axis z.

The gas jet, directed along the x-axis (perpendicular to the field propagation), is
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modeled by a Gaussian distribution along the y and z dimensions, and a constant profile

along its axial dimension, x. Therefore, the atom density distribution is given by

n(y, z) = n0e
− (y−yc)

2

2σ2
y e

− (z−zc)
2

2σ2
z (2.80)

where n0 is the maximum gas density over the interacting volume, and yc, zc are the

coordinates of the center of the beam axis with respect to the laser focal point. The

quantities σy and σz are the full width half maximum of the gas jet distribution in each

direction respectively. Figure 2.15 shows the particular example where the gas jet is

placed 2 mm before the focus of the beam (i.e. zc = −2 mm), with σz = 500 µm. In

the transversal direction, the parameters of the Gaussian distribution are yc = 0 µm

and σy = 500 µm. We implement the Monte Carlo method to determine the position

of the cells in the sample.

Figure 2.15: Cell distribution resulting from the Monte Carlo method using the Gaussian

density (2.80) with the following parameters: yc = 0, zc = −2 mm, σy = 500 µm and

σz = 500 µm. In a we plot the x-z distribution, while in b to d we plot the distributions

along each dimension. The beam waist of the fundamental beam is W0 = 30 µm and the

Rayleigh range, marked with the dashed line in a, results z0=3.5 mm.
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As we discussed in section 2.5.1, for the particular example considered here, the

diameter of the discrete cells must be enclosed in the interval 100 nm < d < 6 µm.

Although the final result is independent on the actual choice within this interval, the

use of smaller diameters dilates the computing time, as the same convergence goal is

attained for a larger number of cells. This is illustrated in Fig. 2.16 where we present

results for three different cell diameters. The first column shows the results of the bare

problem, i.e. a collection of point dipoles, while columns 2 to 4 present the results of

the DDA computations using cells with diameters 1, 2 and 3 µm respectively. The

convergence of each case is illustrated through the different rows, which correspond to

a different number of cells. Note that for 105 cells (6th row) all cases have converged,

including the bare case. On the other hand, it becomes evident that using cells of

larger diameter reduces the convergence time. In particular, for the choice of 3 µm

it is sufficient to consider 104 cell’s to obtain good results, that means a reduction of

computing time of one order of magnitude in comparison with the bare dipole case.
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Figure 2.16: Angle-resolved high-order harmonic spectra for different numbers and sizes

of the spherical cells within the DDA. On the column on the left, the simulation is done

without the DDA approximation, that is, considering point atoms. On the others columns,

from left to right, we have used spherical cells of diameters 1, 2 and 3 µm. The rows

correspond to computations using different number of cells: in the first row we have 1

sphere, while 10, 102, 103, 104 and 105 spheres are considered in the following ones. The

gas jet is placed 1 mm before the focus of the laser beam. The laser pulse is 8 cycles (full

temporal length) at 800 nm with a peak intensity of 1.57× 1014 W/cm2.
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3

Generation and propagation of

high-order harmonics from

near-IR fields in rare gas targets

There are three main geometrical setups for obtaining high-order harmonics from the

laser-gas interaction. In the first observations of HHG, a tight focus was needed to reach

an intensity high enough to ionize a noble gas atom [13, 14]. For that purpose, a near-

infrared laser beam was focused perpendicularly to a gas jet of few millimeters width.

With the advance of intense laser technology, short laser pulses were produced with

enough energy to allow for loose focusing geometries [99, 114, 115]. In this case, the

target extension can be increased, and gas cells and waveguides can be used, allowing

to exploiting the details of propagation phase-matching to optimize the efficiency of

the HHG [9].

In this chapter, we study the high-order harmonic generation and propagation pro-

cesses from near-infrared laser sources in gas jets and cells. We shall consider Ti:Sa

laser systems, i.e., those with wavelength near 800 nm, and, as targets, low-density

jets of hydrogen and argon, and cells filled with low-pressure xenon, the typical density

being 1017- 1018 atoms/cm3 in both cases. Figure 3.1 shows schematically both config-

urations. We will use the SFA+ method [41] for computing the single-atom emission

(see section 1.3), whereas for the harmonic propagation we will use the integral solution

of Maxwell’s equations combined with the DDA method (see section 2.5.1). The gas

jets are modeled using a Gaussian distribution along the y and z dimensions, and a
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Figure 3.1: Scheme of the HHG process driven in a a gas jet and b a gas cell. The rare

gas density is approximately 1018 atoms/cm3, whereas the target size in a gas jet is below

one millimeter, and in the gas cell of a few centimeters. .

constant profile along the axial direction, x, as given by Eq. (2.80). On the other hand,

the gas distribution in a cell will be considered constant.

In the following we will present the original results of our theoretical methods, which

will be compared with different experimental results, from ours and other groups.

We have divided this chapter in four sections. First of all we analyze the effect

of the different contributions to phase-matching in a gas jet, using a tight focusing

configuration. We will discuss on-axis and off-axis harmonic detection. In this latter

case, quantum path interferences are known to play an important role in the angular

far-field profile of the high-order harmonics. We shall then introduce our experimental

setup for high-order harmonic generation and use the laboratory results to validate our

simulations. In section 3.2 we will investigate theoretically the characteristics of the

attosecond pulses obtained from HHG under different phase-matching conditions, in

particular, the dependence of the pulse width with the angle of detection. In section

3.3 we will differentiate between longitudinal and transversal phase-matching. For this,

we shall introduce the spatial map of the harmonic emission as an original theoretical

tool to study the phase-matching process. By studying theoretically and experimentally

the effect of aperturing the laser beam in the efficiency of the harmonic signal, we will

identify the relevance of the transversal coherence length. Finally, in section 3.4 we will

study the HHG process in a xenon semi-infinite gas cell, where not only phase-matching

but absorption is relevant, and we will compare the theoretical results directly with the

experiments made in the group of M. Kovačev in Universität Hannover, with which we

have been collaborating.
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axis

3.1 Phase-matching for different target positions along

the propagation axis

In this section we study the propagation of high-order harmonics generated in the

interaction between a focused laser beam and a gas jet. First, we shall concentrate of

the different aspects of the phase-matching process when detecting the harmonics on-

axis. Secondly, we will study the dependence of phase-matching with the observation

angle, that is, the angular profile of the emitted radiation. Finally we will present

experimental results for different target positions along the propagation axis.

3.1.1 On-axis phase-matching

In a gas jet configuration, the typical width of the gas jet falls between 0.1 to 1 mm, and

the gas densities between 1017 to 1018 atoms/cm3. In this situation, the phase of the

high-order harmonics can be factorized into three different contributions: (i) the Gouy

phase associated to the Gaussian laser beam (see Section 2.3.1), (ii) the intrinsic phase,

which depends mainly on intensity and is a consequence of the rescattering mechanism

for harmonic generation in the single-atom (see Section 2.3.3), and (iii) the dephase

produced in the fundamental field by the presence of free electrons (see Section 2.3.2),

which is imprinted to the harmonics as a result of the non-linear process of harmonic

generation. Therefore the phase-mismatch function for the qth-order harmonic detected

on-axis –see Eq. (2.48)– can be approximated by

∆kq ) ∆kGouy
q +∆kintq +∆kfq )

q − 1

z0
+ αi

q
∂I(z)

∂z
+

qe2nfλ0

mc2
(3.1)

where z0 is the Rayleigh distance, I(z) the laser intensity distribution along the prop-

agation axis, αi
q a constant that depends on the rescattering trajectory that generates

the harmonic (i), and nf the density of free electrons in the gas.

Our computational method allows to naturally isolate the contributions of the dif-

ferent target points to the total harmonic spectrum. Therefore, it is possible to analyze

the local phase of the field emitted. In addition, some physical contributions to phase-

matching can be switched on and off (for instance, ionization). As a consequence,

our theoretical tool allows us to analyze with detail the phase-matching phenomena in

different situations.
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Role of the Gouy and intrinsic phases

Let us isolate the Gouy and intrinsic contributions in the high-order harmonics, thus

neglecting the influence of the free electrons in the phase-matching process. We consider

an 800 nm laser pulse, whose envelope is modeled by a sin2 function, 8 cycles full

temporal length (2.9 cycles FWHM) and 1.57× 1014 W/cm2 peak intensity. The pulse

propagates as a Gaussian beam of waist W0 = 30 µm, thus resulting in a Rayleigh

range of z0=3.5 mm. In Fig. 3.2 we plot the phase of the 21st harmonic (blue line)

along the propagation axis, separated into two contributions, the Gouy phase (red line)

and the intrinsic phase (green line). The comparison between these two contributions

shows that, while the Gouy phase always decreases with the distance, the intrinsic

phase, which depends on the intensity gradient, is symmetric with respect to the laser

focal point. Therefore, the phase-mismatch resulting from the Gouy phase is always

positive, while that coming from the intrinsic phase changes from positive to negative

at the focus –see equation (3.1)–. As a consequence, when the target is located after

the focus, the opposite behavior of the intrinsic and Gouy phases compensates, and

results in an efficient phase-matching.

Figure 3.2: Spatial distribution of the Gouy (red line), intrinsic (green line), and both

(blue line) phase contributions to the 21st harmonic generated in hydrogen along the

propagation axis z, for an 800 nm laser pulse of 8 cycles full temporal length (2.9 cycles

FWHM) and 1.57× 1014 W/cm2 peak intensity. The beam waist is W0 = 30 µm and the

Rayleigh range (dashed line) results z0=3.5 mm.
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In Fig. 3.3 we plot the phase of the 17th and 21st harmonics (blue line in 3.3a and

3.3b), and the local coherence length –i.e., the inverse of the spatial derivative of the

phase (2.46)– along the propagation axis (pink line in 3.3c and 3.3d). We can observe

for both harmonics how the coherence length is longer for z > 0, while shorter for

z < 0, thus obtaining better phase-matching conditions when the gas jet is placed after

the focus position.

Figure 3.3: Spatial distribution of the Gouy and intrinsic phase contributions (blue line)

to the 17th (left column) and 21st (right column) harmonics generated in hydrogen along

the propagation axis z. In the plots below (pink lines) we show the local coherence lengths.

The laser pulse is 8 cycles full temporal length (2.9 cycles FWHM), 800 nm in wavelength

and 1.57× 1014 W/cm2 peak intensity. The beam waist is W0 = 30 µm and the Rayleigh

range (dashed lines) results z0=3.5 mm.

Let us compute the harmonic spectra for these two different jet positions. For this,

we shall consider a hydrogen gas jet, whose parameters were described in Fig. 2.15. We

show in Fig. 3.4 the harmonic spectra centering the gas jet 4 mm after (purple line)

and before (light blue line) the focus position. We can observe that for the higher-order

harmonics (q " 19) there is a substantial enhancement of the yield when the gas jet

is placed after the focus. This is explained by observing Figs. 3.3c and 3.3d, where

the variation of the coherence length from before to after the focus increases for the

higher-order harmonics.
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Figure 3.4: Harmonic spectra for a gas jet configuration where the target was centered

4 mm after (purple line) and before (light blue line) the focus position. The laser pulse is

8 cycles full temporal length (2.9 cycles FWHM), 800 nm in wavelength and 1.57 × 1014

W/cm2 peak intensity. The beam waist is W0 = 30 µm and the Rayleigh range results

z0=3.5 mm. The gas jet is modeled by a Gaussian distribution –see Eq. (2.80)– whose

widths are σy = 500 µm and σz = 500 µm.

On the other hand, if the beam waist is increased, the Rayleigh range will be also

increased, and the variation of the harmonics phase along the propagation axis would

be lower for a fixed jet width, thus favoring phase-matching conditions. For that reason,

long focal lengths are usually employed for efficient high-order harmonic generation.

Role of the free electrons

As described in section 2.3.2, the contribution of the free electrons in the refractive

index of a rare gas has to be taken into account for propagation lengths of the order of

a few millimeters or even below, becoming especially important if the gas jet is placed

close to the focus of the beam, where the intensity is maximum. We implement in

our code the time-dependent ionization in the pulse propagation through the gas jet

as described in 2.2.2. Note that for the densities and propagation lengths discussed in

this section, we can neglect the contribution to the refractive index from the neutral

atoms.

In Fig. 3.5 we plot the phase of the 21st harmonic in two different situations. In

3.5a the gas jet is placed 2 mm before focus, while in 3.5b it is placed 2 mm after the

focus. In both figures we have represented the different contributions to the phase: (red
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line) the Gouy phase, (green line) the intrinsic phase, (blue-dashed line) the sum of the

Gouy and the intrinsic phase, and (pink line) the total phase, including also ionization,

i.e. the effect of the free electrons. Plots 3.5c and 3.5d show the local coherence length

along the propagation length, corresponding to the cases (a) and (b) respectively. At

the background, the grey line represents the atom distribution along the propagation

axis, whose shape is the same as the one considered in the previous section, and peak

density is 1018 atoms/cm3.

Figure 3.5: Spatial distribution of the phase of the 21st harmonic along the propagation

axis z when the gas jet is placed a before, zc = −2 mm, and b after the focus position, zc = 2

mm. The different contributions to the phase are plotted as follows: (red) the Gouy phase,

(green) the intrinsic phase, (dashed-blue) the sum of the Gouy and the intrinsic phase and

(pink) the total phase, including also ionization, i.e. the effect of the free electrons. Plots

c and d represent the local coherence length –i.e., the inverse of the spatial derivative of

the phase– of the 21st harmonic along the propagation axis z when the gas jet is placed 2

mm before and after the focus respectively (pink lines). At the background, the light grey

line represents the gas jet profile along the propagation axis, whose peak density is 1018

atoms/cm3.
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From Fig. 3.5a, we observe that, if the gas jet is located before the focus, the dephase

induced by free charges has a strong contribution, increasing the spatial variation of

the total phase along the propagation axis (blue line). On the other hand, when the

gas jet is located after the beam focus (Fig. 3.5b), the addition of the phase induced

by free charges to the total phase (pink line) does not affect this latter dramatically

the total phase without it (dashed-blue line). Figures 3.5c and 3.5d show that the

difference in coherence lengths before and after the focus is even higher.

Let us now analyze in detail the contribution of the ionization (i.e. free electrons)

to the phase of the harmonics. At a fixed time tf , the phase-shift imprinted by the

ionized electrons in the propagation of the fundamental field (2.33) can be split into

two terms that depend on the propagation distance: (i) the integration of the atomic

density,
∫ z−vgtf
−∞ n0(x, y, ξ)dξ, and (ii) the ratio for ionized electrons, Pf (r, tf − z/vg),

whose dependence on the position is given by the electromagnetic field strength. In

Fig. 3.6 we analyze both terms separately for three cases, where the gas jet is centered

in the focus, 2 mm before and 2 mm after the focus position, fixing tf at the end of the

laser pulse. As the gas jet is the same, the integration of the atomic density over the

propagation distance is the same for the three cases (see 3.6a), whereas the ratio for

ionized electrons becomes different, as the intensity profile is different in all the cases

(see 3.6b). These two terms are multiplied when obtaining the total phase of a given

harmonic. We can observe how, when the gas jet is placed before the focus, both terms

add up together, thus implying an increasing of the variation of the harmonic phase

over the propagation distance (see 3.6c). In contrast, when the gas jet is placed after

the focus (see 3.6e), both terms tend to compensate, so the harmonic phase is almost

transparent to ionization.

Obviously, from the considerations above, one can deduce that an increase in the

atomic density of the gas jet will enhance the effect of the ionization in the harmonic

phases, thus increasing the difference between placing the jet before or after the focus

position.
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Figure 3.6: a Integration of the atomic density,
∫ z−vgtf
−∞

n0(x, y, ξ)dξ, at the end of the

laser pulse (tf ), for a gas jet centered at zc and whose width in the longitudinal axis is given

by σz = 500 µm. b Ratio for ionized electrons, Pf (r, tf −z/vg), for a gas jet centered 2 mm

before (blue line), 2 mm after (red line) and on (yellow line) the focus position. The phase

of the 21st harmonic with (pink line) and without (blue line) ionization is represented for

a gas jet placed c 2 mm before e 2 mm after and d on the focus position. The peak atomic

density is 1018 atoms/cm3.

3.1.2 Off-axis phase-matching: modifying the contrast of the quan-

tum path interferences

As it was explained in section 1.1.4, in each half cycle of the laser pulse there are

two possible electron trajectories leading to the same kinetic energy at recollision, and

therefore two possible semiclassical paths for the generation of the same harmonic (each

named accordingly to the excursion time as short and long trajectory). Accordingly to

the Feynmann description, each semiclassical trajectory has associated a phase corre-

sponding with the mechanical action. Since this phase is translated to the harmonic

radiation, the final harmonic emission reflects the interference between the contributions
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of the short and long trajectories. The first experimental evidence of the interference

between different quantum paths was demonstrated by A. Zäır et al. [69].

There are different approaches for controlling or selecting the trajectories. At the

single-atom level, two-color laser fields have been used extensively for control the elec-

tron trajectories in order to enhance the harmonic emission [116, 117, 118] or improve

the attosecond pulse generation [67, 119]. Other methods to control the quantum path

dynamics use a polarization gate [53, 120] or the overlap of two replicas of the same

laser pulse to extend the harmonic cut-off [121].

In addition, it is possible to control each quantum path contribution macroscopically

as follows. The phase associated to each trajectory contribution (i) for the qth-order

harmonic can be approximated by the product of the ponderomotive energy Up by

the excursion time τ iq, as φi
q ) −Upτ iq ) −αi

qI. As a consequence, the phase of each

trajectory contribution is proportional to the laser pulse intensity (I), by a factor of

αi
q. This factor is larger for long (L) trajectories rather than short (S) ones (αL

q > αS
q ),

i.e., the variation of the intrinsic phase of the long trajectories along the propagation

axis is higher than the short ones [64].

It is already known [48, 71, 100] that when the target is positioned after the focus,

phase-matching favours only short trajectories, becoming the dominant at all detection

angles. In contrast, when the target is located before the focus, both trajectories are

present, being the short ones the dominant on-axis, whereas as the angle of detection

increases, the contribution of long trajectories becomes gradually important. Therefore,

when the target is positioned before the focus, there is a range of detection angles in

which the contributions of both trajectories to the harmonic spectrum are comparable.

This effect is easily explained if we look at the phase-mismatch for each family of

trajectories. In the one-dimensional approach, and neglecting the effect of neutral

atoms, if we detect the qth-order harmonic at an angle θ from on-axis, the phase-

mismatch function (see Eq. 2.48) becomes

∆kq )
q − 1

z0
+ αi

q
∂I(z)

∂z
+

qe2nfλ0

mc2
−

qω0

2c
θ2 (3.2)

The angle of detection θ adds a new degree of freedom for controlling phase-

matching conditions. If we place the gas jet before the focus, the intrinsic phase-

mismatch is positive, αi
q∂I(z)/∂z > 0, and can be compensated by the contribution of

the angle of detection, which is negative, −qω0θ2/2c. As (αL
q > αS

q ), short trajectories
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would be better phase-matched for low angles of detection, whereas long trajecto-

ries for higher angles. As a consequence, by changing the angle of detection one can

change the phase-matching conditions separately for each family of trajectories, and

thus control macroscopically the weight of each trajectory contribution. On the other

hand, if the target is located after the focus, the intrinsic phase-mismatch is negative,

αi
q∂I(z)/∂z < 0, so short trajectories will be always better phase-matched in the whole

angular profile.

Figure 3.7 shows the angle-resolved high-order harmonic spectra as resulting from

our simulations when the gas jet is placed 2 mm (a) before and (b) after the focus.

In correspondence with the above discussion, on-axis we can observe an enhancement

of high-order harmonics when the gas jet is placed after the focus. When looking at

higher angles of detection, we can observe some rings appearing in the harmonic profile

when the gas jet is placed before the focus position (see Fig. 3.7a). These structures

correspond to situations in which both short and long trajectories interfere with the

same weight. On the other hand, when the gas jet is placed after the focus (Fig. 3.7b),

there is no interference structure, since the short trajectory contributions dominate at

all angles. These results are in agreement with theoretical and experimental results

presented by other authors, using also different methods for computing propagation

[70, 85, 108, 122].

Another issue that we can observe in Fig. 3.7 is the reduction of the cut-off frequency

due to propagation. As we have seen in section 1.1.3, the theoretical value for the

maximum emitted frequency in single-atom high harmonic generation corresponds to

Ip + κUp being κ = 3.17 [123]. In hydrogen, with the parameters of our simulation,

this corresponds to the 28th harmonic. Nevertheless, in figure 3.7 we can observe

that propagation mismatch reduces the maximum harmonic below 28th, and near 21st.

This value will correspond to κ ) 2, which is in good agreement with the experimental

observation in [124].

For the sake of completeness we represent in Fig. 3.8 the angular profile of the

high-order harmonics for five different positions of the gas jet with respect to the

focus position. We can observe how the interference pattern between short and long

trajectories disappears as we place the gas jet further after the focus position. In

addition, the highest harmonics (17th to 27th) are substantially enhanced, and present

a wider angular structure when placing the gas jet after the focus position.
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Figure 3.7: Angle resolved high-order harmonic spectra when the hydrogen gas jet is

placed 2 mm a before and b after the focus of the laser beam (see the insets of the figures).

The laser pulse is 8 cycles full temporal length (2.9 cycles FWHM) at 800 nm with a

peak intensity of 1.57× 1014 W/cm2, with a beam waist of W0 = 30 µm. The color scale

represents the yield of the harmonics in arbitrary units (log. scale).
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Figure 3.8: Angle resolved high-order harmonic spectra when the hydrogen gas jet is

placed at positions -2 mm, -1 mm, 0 mm, 1 mm and 2 mm respect to the focus position. We

represent the divergence angle (mrad) in the horizontal axis, whereas the harmonic order

in the vertical axis. The laser pulse is 8 cycles full temporal length (2.9 cycles FWHM) at

800 nm with a peak intensity of 1.57× 1014 W/cm2. The beam waist is W0 = 30 µm. The

color scale represents the yield of the harmonics in arbitrary units (log. scale).
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In figure 3.9 we show the variation of the angular profile of a particular harmonic

when the position of the gas jet is varied continuously along the propagation axis. The

variation of the angular profile is represented for the (a) 17th, (b) 19th, (c) 21st and

(d) 23rd harmonics. As discussed above, the ring structures appear for target positions

before or at the focus, while after the focus the angular structure becomes smoother.

The figure also describes the variations of the intensity of the radiated harmonics with

the location of the target. As we can observe, the higher the harmonic is, the more

contrast exists between the signal of the harmonic before and after the focus. While in

the 17th harmonic this difference is not very important, as we increase the order of the

harmonic, it becomes critical, as for example in the 23rd harmonic, where there is no

signal before the focus.

Figure 3.9: Spatial profile of the a 17th, b 19th, c 21st and d 23rd harmonics when the

gas jet is placed in different positions relative to the focus position, along the propagation

axis.

Finally, a further insight of this process can be gained performing the time-frequency

analysis (see section 1.3.2) of the harmonic spectra at different detection angles pre-

sented in Fig. 3.7. We integrate the harmonics over a spatial window of 0.5 mrad in

the far field profile for each detection angle. The time-frequency analysis is performed
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Figure 3.10: Time-frequency analysis of the filtered harmonics of the spectra presented

in Fig. 3.7, when they are detected in a window on-axis (first row) and at 4.5 mrad (second

row). From left to right, the gas jet is placed 1 mm before/after the focus position. The

temporal axis is in units of the laser cycle. The laser pulse is 2.9 cycles FWHM, at 800 nm

with a peak intensity of 1.57× 1014 W/cm2.

using a frequency window of length 3.5ω0, ω0 being the frequency of the fundamental

field. On the left column of Fig. 3.10, we show the time-resolved emission of the high

harmonics (a) on-axis and (b) at 4.5 mrad, when the gas jet is placed 2 mm before the

laser focus. On the right column, the same angles are used but with the target 2 mm

after the focus.

We can observe that when the harmonics are detected on-axis (Figs. 3.10a and

3.10c), the electron’s recollision energy shows a roughly linear dependence on time, in

which the lower harmonics are emitted before the higher ones, giving rise to a positive

chirp typical from the harmonic spectrum emitted by short trajectories. This situation

is also present in 3.10d, thus confirming that when the gas jet is placed after the

focus position, the short trajectory contributions dominate for all detection angles. In

contrast, in 3.10b we observe how the time-frequency structure is more complex, with

contributions with both positive and negative slopes, thus confirming the existence of

both short and long quantum paths. In addition, we can distinguish regions where

the signal is minimum, coming from the interference between short and long trajectory

contributions.
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Ring structures in the angular profile of the harmonics

In the considerations above we have identified the spatial interference between the short

and long trajectory contributions when changing the angle of detection. However, both

contributions also interfere in the spectral domain. The spectral distribution of the

qth-order harmonic generated with a driving laser field of frequency ω0, is different for

the short and long trajectory contributions (see section 1.2.2). For instance, the short

contribution is dominant in the vicinity of the exact harmonic frequency qω0, whereas,

the long contribution is spread over a wider spectral window as causes a larger chirp

in the spectrum. As a consequence, the interference of both trajectory contributions

gives rise to the appearance of annular rings in the angular spectra of the harmonics.

In order to show these ring structures, we plot in Fig. 3.11a the angular profile

of the high-order harmonics generated in an argon gas jet of density 1018 atoms/cm3.

The laser pulse is 32 cycles full temporal length (30 fs FWHM) at 800 nm with a

peak intensity of 5.9 × 1014 W/cm2, with a beam waist of W0 = 20 µm. The gas

jet is placed 1 mm before the focus position, favoring the interference between short

and long trajectory contributions off-axis. As we can observe in detail in Fig. 3.11c,

annular rings are observed in the angular profile, in excellent agreement with previous

theoretical and experimental findings in the literature [71, 73, 125]. In Fig. 3.11b we

plot the high-harmonic spectrum integrated over the detection angle, where we can

distinguish the wider and lower distribution of the long paths (red dashed line) and the

narrower and higher of the short paths (green dashed line).

On the other hand, ionization causes a blue-shift in the harmonic spectrum [126],

due to the chirp imprinted during the propagation of the fundamental field in the

medium. The blue-shift is larger for long contributions than short ones. As a conse-

quence, the ring structures in the spatial profile of the harmonics are antisymmetric

with respect to qω0, as can be observed in Figs. 3.11a and 3.11c. This effect was

not observed in previous sections, where the intensity and gas densities were not high

enough to produce it.
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Figure 3.11: a Spatial profile of the high-order harmonics generated in an argon gas jet

of density 1018 atoms/cm3. The laser pulse is 32 cycles full length (30 fs FWHM) at 800

nm with a peak intensity of 5.9 × 1014 W/cm2, with a beam waist of W0 = 20 µm. The

gas jet is modeled by a Gaussian distribution –see Eq. (2.80)– whose width is σy = 100

µm and σz = 100 µm, and it is placed 1 mm before the focus position. b High-harmonic

spectrum (yield in log. scale) integrated over the spatial axis, showing the distribution

coming from long (red dashed) and short (green dashed) trajectory contributions. A detail

of plot a covering 17th to 21st harmonics is shown in plot c.
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3.1.3 HHG along the propagation axis: theory vs experiments

In this section we present an experimental study of the phase-matching of high-order

harmonics along the propagation axis, and we compare it with the results obtained

with our theoretical method. For that purpose we have used a 100 fs Ti:Sa laser

system (Spectra Physics, 800 nm, 10 Hz and up to 50 mJ pulse energy) belonging to

the laser facility of the University of Salamanca and under the guidance of Dr. Íñigo

J. Sola.

Figure 3.12 represents an scheme of the setup used in the experiment. Odd har-

monics of the fundamental frequency are generated by focusing the compressed laser

beam (of about 1 mJ pulse energy) with a 40 cm focal length lens into a pulsed argon

jet exiting from a 500 µm nozzle inside a vacuum chamber (10−4 mbar). The relative

distance between the focus position and the gas jet was continuously changed using

a motorized linear stage. Previously, the focus position was identified by imaging the

transversal beam distribution along the propagation axis. In addition, the interaction

between the laser beam and the gas jet was aligned by imaging the inside of the vacuum

chamber with a CCD camera (see Fig. 3.12c). Once the XUV radiation was gener-

ated, a thin aluminum filter (150 nm in thickness) was used to eliminate the remaining

infrared laser pulse. In the next step, the harmonics were spatially selected by a slit

before being characterized by a Rowland circle type XUV spectrometer (McPherson

248/310G) [127, 128]. The spectrometer consists of a reflective spherical grating, a mi-

crochannel plate coupled to phosphor screen and a CCD detector, all of them inside a

vacuum chamber (10−6 mbar). In our measurements, the XUV radiation was angularly

recorded in the CCD detector.

In the first row of Fig. 3.13 we show the experimental angular profile of the high-

order harmonics for a gas jet placed 2 mm (a) before and (b) after the focus position.

The measurements were obtained by integrating the 10 Hz signal over eight minutes in

the CCD detector.

In order to compare the experiments with our theoretical results, we implement the

SFA+ method for single-atom HHG, and the DDA propagation method, explained in

the previous chapters, and used previously during this chapter. We do our simulations

in argon, using the Roothaan-Hartree-Fock wavefunction [79] for the ionization and

rescattering matrix elements. The acceleration operator for hydrogen in [41] is replaced
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Figure 3.12: a Scheme of the experimental setup used for HHG. XUV radiation is gen-

erated by focusing (40 cm focal length) the laser pulse in an argon gas jet exiting from

a 500 µm nozzle inside a vacuum chamber (10−4 mbar) whereas the remaining infrared

laser pulse is eliminated by a 150 nm in thickness Al filter. The harmonics are spatially

and spectrally characterized by a Rowland circle type XUV spectrometer inside another

vacuum chamber (10−6 mbar). In panel b we show a picture of the experimental setup

from the view of the detection system. In plot c we show a picture of the vacuum chamber

in which the harmonics are generated. We used the 100 fs Ti:Sa laser system (Spectra

Physics, 800 nm, 10 Hz and up to 50 mJ pulse energy) belonging to the laser facility at

the University of Salamanca.
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accordingly with the gradient of the Coulomb potential of the argon ion [80]. The 800

nm laser pulse was modeled by a sin2 function 32 cycles full temporal length (30.7 fs

FWHM) with a peak intensity of 1.57 × 1014 W/cm2. The laser pulse duration in the

computations is approximately one fourth of the laser pulse of the experiment, due

to the lack of computational time. However, this fact will not change substantially

our results. The Gaussian laser beam (with waist W0 = 30 µm, computed from the

experimental focal length and beam waist) was focused into an argon gas jet of density

1018 atoms/cm3. The gas jet is modeled by a Gaussian distribution –see Eq. (2.80)–

whose widths are σy = 500 µm and σz = 500 µm.

In the second row of Fig. 3.13 we present the simulated angular profile of the high-

order harmonics for a gas jet placed 2 mm (c) before and (d) after the focus position.

As can be observed, the theoretical and experimental results are in agreement in two

major aspects already discussed above. First, the cut-off of the spectrum is higher when

the gas jet is placed after the focus, i.e., high-order harmonics are better phase-matched

for a gas jet placed after the focus rather than before. Secondly, the divergence of the

harmonics is also higher when the gas jet is placed after the focus. In contrast, we were

not able to reproduce experimentally the fringes (or rings) coming from the interference

between different quantum paths that should appear when the gas jet is placed before

the focus position. We attribute this to the low stability of the laser system, as the

average of the harmonics over eight minutes inhibits the appearance of the quantum

path interference fringes in the angular profile of the harmonics. In conclusion, in Fig.

3.13 we present the first results of our theoretical methods compared directly to the

experiments.
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Figure 3.13: Angle-resolved high-order harmonic spectra resulting form experiments and

theory when the argon gas jet is placed 2 mm a c before and b d after the focus of the

laser beam respectively. A 100 fs Ti:Sa laser system (Spectra Physics, 800 nm, 10 Hz) was

used with a pulse energy of about 1 mJ. The compressed laser beam was focused with a

40 cm focal length into an argon gas jet exiting from a 500 µm nozzle. Theoretically, the

800 nm laser pulse was modeled by a sin2 function 32 cycles full temporal length (30.7 fs

FWHM) with a peak intensity of 1.57 × 1014 W/cm2, whereas the Gaussian laser beam

(W0 = 30 µm) was focused into an argon gas jet of density 1018 atoms/cm3. The color

scale represents the yield of the harmonics in arbitrary units (log. scale).
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3.2 Off-axis compensation of attosecond chirp

Attosecond XUV pulses can be synthesized selecting a window of the higher harmonic

spectrum, using an appropriate filter. Physically, this corresponds to the isolation of the

radiation bursts associated with the most energetic rescattering events, having typical

durations well below the laser cycle. As the scatterings at different kinetic energies

take place at different times (see section 1.1.4), the attosecond bursts are chirped and,

therefore, its temporal duration is not the Fourier limit [50, 51, 52]. Also, since at least

two different trajectories contribute to the same harmonic, the final time structure of

the burst is complex. In addition, the macroscopic conditions of the experiment play

an important role for the final phase-locking of the different harmonics [129, 130].

It has been reported the possibility of reducing the width of the high-order harmonic

bursts selecting the contribution of a single trajectory using appropriate phase-matching

conditions [122, 131, 132]. In this section we shall show that, for particular angles of

detection where both the short and the long trajectories are relevant, the destructive

interference of short an long paths can lead to a final attosecond burst with smaller

duration than the corresponding to a single trajectory. Spectrally, this corresponds to

an optimal compensation of the chirp of the attosecond pulse.

We have performed our computations assuming a fundamental field of 8 cycles full

temporal length (2.9 cycles, 7.7 fs FWHM) sin2 envelope at 800 nm, with intensity at

focus ) 2.45× 1014 W/cm2 and polarized along the x direction. The beam is assumed

Gaussian, propagating along the z direction. The beam waist at focus is 22.5 µm

and the confocal parameter b = 3.98 mm. The target is modeled as an argon gas

jet flowing perpendicularly to the Gaussian beam. The gas jet profile is constant in

the x direction, while Gaussian in y and z directions, with FWHM 500 µm, and peak

density 1018 atoms/cm3. For the angular resolved detection, we consider a window of

0.5 mrad in the far field profile, which would correspond experimentally to an annular

gate. Figure 3.14 illustrates the scheme of this setup.

The attosecond pulses have been computed by Fourier transformation of the har-

monic spectra detected at a particular angle, after filtering out of the low energy part.

We have considered an aluminum plate filter, multiplying the total harmonic spectrum

times the transmission function for this metal (obtained from [98]).
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Figure 3.14: Scheme of the off-axis detection geometry used to demonstrate the angular

chirping compensation of the attosecond bursts.

We plot in Fig. 3.15 the train of attosecond pulses resulting from the Fourier

transform of the harmonic spectra obtained with our numerical simulation. We have

considered two different situations: target placed before the laser focus (left column:

plots 3.15a to 3.15c) and after the focus (right column: plots 3.15d to 3.15f). The first

row in Fig. 3.15 –plots (a) and (d)– corresponds to the attosecond pulses detected

on-axis, while the second row shows the off-axis detection –plots (b) and (e)–, where

the spatial window was centered at 3.3 mrad. Finally, the third row –plots (c) and

(f)– shows the width of the most prominent attosecond pulse as a function of the angle

detection. The main conclusion of this section can be drawn by inspection of plots (a)

and (b), comparing the attosecond pulse obtained on and off-axis. The reduction of

the pulse width becomes apparent for the off-axis case, obtaining 184 attosecond pulses

in contrast with 321 attosecond on-axis. This reduction has a physical explanation in

the interference between the radiation bursts associated with the rescattering of short

and long paths, which is more acute off-axis, where both trajectories have compara-

ble weights, rather than on-axis, where short trajectories dominate. To support this

conclusion, we should expect, in a situation where phase-matching favors only short

paths at any angle, no reduction of the attosecond width with the angle of detection,

as no other contribution cancels the positive chirp due to the short trajectories. As

discussed previously in this chapter, this situation is found when the target is located

after the laser focus position. The results of our simulations in this situation are shown

in the plots at the right column of figure 3.15. Plots 3.15d and 3.15e (target after the

focus) shows little variation in contrast with the cases 3.15a and 3.15b (target before
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Figure 3.15: Temporal distribution of the attosecond train of pulses when the high-order

harmonics are detected in a window a on-axis and b centered at 3.3 mrad, when the gas

jet is placed 1 mm before the focus position. Figures d and e represent the same situation

as a and b, but when the gas jet is placed 1 mm after the focus position. Figures c and f

shows the FWHM of the pulses synthesized as a function of the detection angle, when the

gas jet is located 1 mm before and after the focus respectively. The driving laser pulse is 8

cycles full temporal length (2.9 cycles, 7.7 fs FWHM) sin2, 800 nm, with intensity at focus

) 2.45× 1014 W/cm2.
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the focus). Figure 3.15f shows that the attosecond pulse width remains practically

insensitive to the angle of detection.

A further insight of this process can be gained performing a time-frequency analysis

of the filtered spectrum at the detection angles depicted in figure 3.15. The time-

frequency analysis is performed using a frequency window of length 3.5ω0, ω0 being the

frequency of the fundamental field. On the left column of figure 3.16, we show the time-

resolved emission of the high harmonics (a) on-axis and (b) at 3.3 mrad, when the gas

jet is placed before the laser focus. On the right column, the same angles are used but

with the target after the focus. Therefore, cases (a) (c) and (d) correspond to situations

in which the short trajectory dominates. Accordingly to what we presented in Fig. 3.10,

the electron’s recollision energy shows a roughly linear dependence on time, in which the

lower harmonics are emitted before the higher ones, giving rise to a positive chirp typical

from the harmonic spectrum emitted by short trajectories. Plot 3.16b corresponds to

the situation of 3.15b, off-axis detection leading to the shorter attosecond pulses. In

this case, the interference between paths results in a modulation of the emission time of

successive harmonics, producing vertical time-frequency structures. Thus, destructive

interference tends to confine the harmonic radiation into a narrower window, reducing

drastically the positive chirp associated to short trajectories alone.

Figure 3.16: Time-frequency analysis of the filtered harmonics of the spectrum, when

they are detected in a window on-axis (first row) and at 3.3 mrad (second row). From

left to right, the gas jet is placed 1 mm before/after the focus position. The intensity is

normalized in each graph. The temporal axis is in units of the laser cycle.

97

3/figures/figatt2.eps


3. GENERATION AND PROPAGATION OF HIGH-ORDER
HARMONICS FROM NEAR-IR FIELDS IN RARE GAS TARGETS

Figure 3.17: Classical temporal dependence of the electron’s recollision energy for a

constant envelope incident field. We have highlighted the time/energy region where long

(negative slope) and short (positive slope) trajectories overlap for the energy range corre-

sponding to harmonics from 11th to 21st. Long trajectories originated near a particular

ionization maximum, overlap with the short trajectories ionized at the following maximum.

In order to understand the details of the interference between trajectories, we have

plotted in Fig. 3.17 the temporal dependence of the electron’s recollision energy, com-

puted classically for a constant envelope incident field. We have highlighted a temporal

region of about 0.15 laser periods (400 as) that includes the rescattering times where

short (positive slope) and long (negative slope) trajectories overlap, for the energy

range corresponding to harmonics from 11th to 21st. Note that this interference oc-

curs between the short and long trajectories originated, respectively, at two consecutive

ionization maxima. Consistently, the modulations of the time-frequency structures in

3.16b, appear also at that highlighted region in 3.17.

In Fig. 3.18 we present the attosecond pulse train and time-frequency structure

from on-axis detection (0 mrad) to different angles off-axis (0.7, 1.3, 2.0, 2.6, 3.3 and

4.0 mrad), for a gas jet placed 1 mm before the focus position. In the time-frequency

structures (right column) we observe how the interferences between short and long

trajectory contributions appear slightly at 1.3 mrad, and change continuously when

increasing the detection angle. As a consequence, the interference is optimal at 3.3

mrad where the time-frequency structure is vertical and thus the attosecond pulse width

is the narrowest. On the other hand we can observe how the yield of the attosecond

pulses decreases as the detection angle is increased (all plots in the left column are

normalized to the same quantity).
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Figure 3.18: Temporal distribution of the attosecond train of pulses (left column) and

time-frequency structure (right column) when the high-order harmonics are detected in a

window on-axis in the first row, and centered at 0.7, 1.3, 2.0, 2.6, 3.3 and 4.0 mrad in the

following rows. The gas jet is placed 1 mm before the focus position, and the laser pulse

is 8 cycles full temporal length (2.9 cycles, 7.7 fs FWHM) sin2, 800 nm, with intensity at

focus ) 2.45× 1014 W/cm2. Plots in the left column are normalized to the same quantity,

whereas plots in the right column are normalized independently.
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Figure 3.19: Quadratic term of the harmonic phase of the attosecond pulses when they

are detected on-axis a and at 3.3 mrad b. At the background of both figures, we show the

harmonic spectra.

In plots 3.19a and 3.19b we show the quadratic term of the spectral phase of the

attosecond pulses showed in 3.15a and 3.15b respectively. When a spatial filter is placed

on-axis to select the short trajectories, a positive chirp is present, in agreement to what

was discussed before. In contrast, when filtering angularly the signal at 3.3 mrad (plot

3.19b) the superposition of the contributions of both trajectories results in a reduction

of the spectral chirp, then phase-locking the different harmonics.

Consistently with our interpretation, we have found also narrower X-ray pulses for

isolated attosecond bursts, therefore excluding the influence of multiple rescatterings

in the pulse off-axis narrowing. For that purpose, in Fig. 3.20 we show the train

of attosecond pulses in the same conditions as in Fig. 3.15 but assuming a 4 cycle

full temporal length (1.4 cycles, 3.8 fs FWHM) sin2, 800 nm fundamental field with

intensity at focus ) 2.45× 1014 W/cm2, that is, half the temporal duration of the case

presented in Fig. 3.15. Although the driving field is 1.4 cycles FWHM, there is still

interference between the long and short trajectory contribution from two consecutive

ionization maxima that leads to the pulse narrowing for harmonics detected off-axis.

We believe that this is a phenomenon potentially useful to reduce of the attosecond

chirping and, thus, to obtain shorter pulses in the laboratory.
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Figure 3.20: Temporal distribution of the attosecond train of pulses when the high-order

harmonics are detected in a window a on-axis and b centered at 3.3 mrad, when the gas

jet is placed 1 mm before the focus position. Plots d and e represent the same situation

as a and b, but when the gas jet is placed 1 mm after the focus position. Plots c and f

shows the FWHM of the pulses synthesized as a function of the detection angle, when the

gas jet is located 1 mm before and after the focus respectively. The driving laser pulse is 4

cycles full temporal length (1.4 cycles, 3.8 fs FWHM) sin2, 800 nm, with intensity at focus

) 2.45× 1014 W/cm2.
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3.3 Signature of the transversal coherence length on high-

order harmonic propagation

In the previous sections we have described phase-matching in terms of a longitudinal

coherence length, which corresponds to the distance between two atoms whose emitted

radiation interferes destructively. However, there is also a transversal coherence length

between the radiation coming from atoms placed in a plane perpendicular to the prop-

agation axis. Here we will look at the conditions in which the transversal coherence

length is more relevant than the longitudinal. In this section, first, we will present the

concept of transverse coherence length. Secondly we will introduce the spatial maps of

the harmonic detection as a novel tool for the analysis of HHG. Finally, we will present

experimental and theoretical results for HHG driven by apertured laser beams in a gas

jet. With the aid of the spatial maps we will identify the signature of the transversal

coherence length in theory and experiments.

3.3.1 Transversal and longitudinal phase-matching

Let us first develop the concept of longitudinal and transversal phase-matching. Con-

sidering a detector at some distance rd, the contribution to the detected harmonic field

of an atom located at r is given by

Eq(r) ∝
[

|dsq(r)|eiφ
s
q(r) + |dlq(r)|eiφ

l
q(r)

]

ei(rd−r)kq (3.3)

where |diq(r)| is the spectral amplitude of the single-atom dipole and φi
q(r) its phase,

for the long and short contributions (i = l and i = s, respectively), and kq is the

propagation vector (|kq| = nr(qω)qω/c, ω being the frequency of the driving field and

nr(ω) the refractive index).

Assuming a driving field propagating along the z-axis, the phase-mismatch associ-

ated to each trajectory contribution for on-axis detection is defined as (see section 2.3)

∆ki
q = kq −∇φi

q = kqez −
∂φi

q

∂z
ez −

∂φi
q

∂ρ
eρ (3.4)

We can now decompose the phase-mismatch into longitudinal (∆k‖q ) and transversal
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components (∆k⊥q ) as:

∆k‖q = kqez −
∂φ1

∂z
ez (3.5)

∆k⊥q = −
∂φ1

∂ρ
eρ (3.6)

and define the longitudinal coherence length as L‖
coh = π/∆k‖q , and the transversal

coherence length, L⊥
coh = π/∆k⊥q .

Let us now consider a Gaussian beam driving field (2.23) propagating through a

medium of refractive index nr(ω). As we already saw in the previous chapter, there are

different physical contributions to the dipole spectral phase φi
q(z). On one side there

is an extrinsic contribution originated by the change in phase of the driving field as

it propagates (Gouy phase, transversal phase and the dephase due to the presence of

free charges and neutrals in the target), and, on the other hand, there is the intrinsic

contribution to the dipole phase originated by the single-atom harmonic generation,

which can be approximated as φi
int ) −αiI, being (i) the electronic trajectory con-

sidered. Therefore, as we already stated in (3.1), we can express the longitudinal

phase-mismatch as

∆k‖q ) q
ω

c
[nr(qω)− nr(ω)] + (q − 1)

∂ζ(z)

∂z
+ αi

q
∂I

∂z
(3.7)

where ζ(z) is the Gouy phase. Along the propagation axis, the phase-mismatch from

the Gouy phase is always positive, while that coming from the intrinsic phase changes

from positive to negative at the focus (see section 3.1). As a consequence, when the

target is located after the focus, the opposite behavior of the intrinsic and Gouy phases

compensates and results in an efficient longitudinal phase-matching.

On the other hand, the transversal phase-mismatch is given by

∆k⊥q ) −q
ω

c
n(ω)

ρ

R(z)
+ αi

q
∂I

∂ρ
(3.8)

where R(z) is the radius of curvature of the Gaussian beam wavefront. For low-density

gases, there are mainly two contributions to the transversal phase-mismatch: the vari-

ation of the transversal phase and that of intrinsic phase. Both contributions are

symmetric in the transversal plane. However, the sign of the transversal phase depends

on the radius of curvature, which is positive before the focus, while negative after the

focus position. As a consequence, when the target is located before the focus, the
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opposite behavior of the intrinsic and transversal phases compensates, thus obtaining

favorable transversal phase-matching conditions.

Note, therefore, that the efficiency of the detected signal will depend on the com-

promise between longitudinal and transversal phase-matching conditions, which behave

opposite respect to the focus position, i.e., the longitudinal coherence length is longer

after the focus, while the transversal is longer before the focus.

3.3.2 Spatial maps of the harmonic detection

In this section we present a novel tool for making a diagnosis of the high-order harmonic

detection. One of the advantages of our propagation method is that allows to analyze

the topology of the harmonic generation, i.e. the contribution of the different target

regions to the far field phase and amplitude of the harmonic at the detector. Here we will

use this possibility to generate maps of the amplitude and phase of these contributions

to the total harmonic field at the detector.

Let us discuss briefly the information provided by the harmonic generation maps.

For this, we shall focus first to the maps corresponding to the 19th harmonic for a

hydrogen gas jet. Fig. 3.21 shows the cases of the gas jet located at (b) 2 mm before

and (c) after the focus position. The laser pulse is assumed to be a sin2 envelope

of 2.9 cycles FWHM (7.7 fs), 800 nm wavelength and peak intensity of 1.57 × 1014

W/cm2. We have assumed a Gaussian beam (with waist W0 = 30 µm) focused into

a hydrogen gas jet. The gas jet, directed along the x-axis (perpendicular to the field

propagation), is modeled by a Gaussian distribution along the y and z dimensions

(whose FWHM is 500 µm), and a constant profile along its axial dimension, x. For this

example (with same parameters as in Fig. 3.7), we have taken hydrogen since, for this

element, the harmonic absorption is negligible. The spatial map shows a background

color which represents the amplitude of the local contribution to the harmonic far field

at the detector, which in this case is located on-axis. This local contribution is obtained

computing the single-atom HHG weighted by the local atom density, and multiplied by

the cylindrical volume element, thus assuming cylindrical symmetry of the target. On

the other hand, the arrows correspond to the polar representation of the field phase.

Note that these maps are conceptually different from those already presented in

[100, 133], in which the background represents the local phase-mismatch and the arrows

stand for the direction in which the harmonic emission is better phase-matched.
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Figure 3.21: Spatial maps of the harmonic detection for the 19th harmonic for a hydrogen

gas jet placed b 2 mm before and c after the focus position. We assume cylindrical

symmetry, therefore each point in the map corresponds to the contribution of a ring at the

target with a particular radius and located at a given distance to the focus. The colored

background represents the amplitude of the contribution, while the phase is represented

through the angle of the arrows. In a we present the intensity of the fundamental Gaussian

beam (red line) and the gas density distribution (grey line) at the two positions presented

here. The parameters of the laser pulse and hydrogen gas jet are the same as those in Fig.

3.7. Note that the cylindrical symmetry is only in the polar integration for the maps.

From our maps, it is possible to identify the longitudinal and transversal coherence

length as the spatial distance between phase-arrows of opposite direction in the horizon-

tal and vertical directions respectively. We represent those lengths as white left-right

and up-down arrows. We observe that the longitudinal coherence length is longer when

the gas jet is placed after the focus position, resulting from the compensation of the

Gouy and intrinsic phase, as explained above. On the other hand, in the transversal

direction, the compensation of the transversal phase and the intrinsic phase leads to

a very large transversal coherence length before the focus (white arrow not shown in

this case), while a finite transversal coherence length can be identified after the focus

position.

Note that the spatial maps presented here are for on-axis detection. If we change
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the detector angle, the optical paths to the detector change thus modifying the arrows’

direction change, and, therefore, the associated coherence length.

3.3.3 Characterization of the detection of high-order harmonics driven

by apertured laser beams

To demonstrate the signature of the transversal coherence length, we have performed

experiments an theoretical computations of the variation of the harmonic yield as a

function of the diameter of an apertured beam. This simple setup has been demon-

strated to be useful to control various aspects relevant to phase-matching: the Gouy

phase, the intrinsic phase and the free-charge density [134, 135]. In the seminal paper

[134], Kazamias et al. demonstrated that a middle-sized aperture was the optimal to

phase-match the harmonics, giving rise to an increase by a factor of 10 of the total har-

monic yield. In this experiment, when aperturing, the variations of the phase-matching

conditions could be attributed to changes in the Gouy phase gradient and in the density

of free carriers. Therefore, the optimal aperture corresponds to the maximal compen-

sation of these two contributions. Our experiment follows the same steps as Kazamias’

but with parameters changed in order to reduce the variations of all the main sources

of phase-mismatch (free charges, intensity gradient, Gouy-phase gradient) with excep-

tion of the wavefront curvature radius. Therefore, we select a case in which aperturing

affects mainly to the transversal phase-matching. To reduce the total ionization and

the intensity gradient, our laser beam energy has been lowered (0.5 mJ, 100 fs instead

of 6 mJ, 30 fs). We have chosen also a Gaussian beam waist smaller (4.5 mm in our

case, against the 11 mm in Kazamias’ experiment) in order to reduce the clipping of the

beam when the smallest aperture (4 mm) is used. We also use a shorter focal length

to increase the transversal phase gradient and, therefore, to reduce the change in the

Guoy phase gradient at the target when aperturing. We use a shorter focal length to

obtain a similar Rayleigh length as in Kazamias’ experiment, for our non-apertured

beam. In few words, we have redesigned the experiment so the effect of the aperture

size in the longitudinal phase-matching is minimal. As we shall see, the experiment still

shows a pronounced variation of the harmonic generation efficiency with the aperture

size. We, then, will use our numerical codes to demonstrate that this variation can

only be attributed to the increase of the transversal coherence length.
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Figure 3.22: Intensity (solid lines) and phase (dashed lines) of the fundamental field, a

along the propagation axis, at a radius ρ = 10 µm, and b along the radial axis at (left)

-2 mm and (right) 2 mm respect to the focus position. We performed simulations for

a non-apertured laser beam (red) and a laser beam apertured (blue) by a 10.5 diameter

diaphragm.

In the simulations we have considered an 800 nm laser pulse, 15.4 fs FWHM with

laser peak intensity at focus 2.5× 1014 W/cm2. The laser pulse duration is shorter

compared to the experiments due to computational reasons. However, as the ionization

rates at the conditions presented here are very low, the same phase-matching conditions

in the theory and the experiment are ensured by using the same laser intensity. We have

modeled the experimental argon gas jet using the same distribution as in Fig. 4.3 with

550 µm FWHM and density 1017 atoms/cm3. The form of the apertured fundamental

field is found by integrating the Slowly-Varying-Envelope (SVEA) equation over the

inhomogeneous gas target. The field found in this way is, then, used to compute the

harmonic generation of the target. In Fig. 3.22 we represent the intensity (solid lines)

and phase (dashed lines) of the fundamental field, (a) along the propagation axis, at

a radius ρ = 10 µm, and (b) along the radial axis at (left) -2 mm and (right) 2 mm

respect to the focus position. We performed simulations for a non-apertured laser

beam (red) and laser beam apertured (blue) by a 10.5 diameter diaphragm. When

the gas jet is centered at -2 mm, we observe that the variation of the Gouy phase for
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Figure 3.23: Picture of the experimental setup used for HHG driven by apertured laser

beams, where a variable iris is placed before the focusing lens (40 cm focal length) in order

to make an aperture in the laser beam to optimize phase-matching conditions. Both iris

and focusing lens are mounted on a motorized linear stage in order to change the relative

position between the gas jet and the focus.

the apertured and non-apertured beams remains similar. On the other hand, although

there is a variation of the intensity gradient when aperturing, the absolute intensity is

small, so the change in the intrinsic phase will be small. In addition, we observe that

the gradient of the transversal phase is dramatically reduced when aperturing, thus

increasing the transversal coherence length. As discussed before, the opposite sign of

the transversal phase before the focus leads to the longer transversal coherence length.

As a conclusion, from Fig. 3.22 we expect a small change in the longitudinal coherence

length, while a noticeable increase of the transversal when aperturing the laser beam

at those gas jet positions.

We have included in our experimental HHG setup (see Fig. 3.12a) a variable di-

aphragm before the focusing lens, as it is shown in Fig. 3.23. Both diaphragm and

focusing lens are mounted on a motorized linear stage in order to change the relative
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Figure 3.24: Transversal intensity profile –theoretical (first row) and experimental (sec-

ond row)– of a laser beam apertured with an iris of 11.5 mm in diameter. The images were

taken at three different positions with respect to the focus (± 0.1 mm, ± 0.3 mm and ±
0.5 mm).

position between the gas jet and the focus, keeping the distance between the diaphragm

and the lens constant.

As a first test we compared the theoretical and experimental intensity profile of the

apertured laser beam at different positions near the focus. Experimentally, we imaged

the reflexion of the beam in a card that was mounted on a motorized linear stage, for

different positions before and after the focus. In Fig. 3.24 we show the transversal

intensity profile of a laser beam apertured with an iris of 11.5 mm in diameter. The

images were taken at three different positions with respect to the focus (± 0.1 mm,

± 0.3 mm and ± 0.5 mm). The agreement between the theoretical and experimental

profiles is excellent.

The resulting laser beam (of about 0.5 mJ pulse energy) is focused with a 40 cm

focal length lens into a pulsed argon jet exiting from a 500 µm nozzle inside a vacuum

chamber (10−4 mbar). The waist (radius) of the laser beam before the lens was 4.5

mm. The generated XUV radiation was characterized by a Rowland circle type XUV

spectrometer, as explained in section 3.1.3.

We have detected the harmonic signal for different iris diameters, from 7.5 mm to

completely opened (∼ 2 cm). The measurements were obtained by integrating the 10

Hz signal over eight minutes in the CCD detector. In Fig. 3.25 we show the detected

harmonic signal for the 17th and 19th harmonics when the gas jet is placed at (a) (b)
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Figure 3.25: Detected signal versus the iris diameter for harmonics 17th (first row) and

19th (second row), when the gas jet is placed a-c 2 mm before, b-f 1 mm before, c-g 1

mm after, and d-h 2 mm after the focus position. The experimental signal is represented

in black dots and error bars, being the dashed-grey line the background noise. Simulations

(dashed red line) use a laser pulse of 15.4 fs FWHM and 0.5 mJ total energy. The argon

gas jet is modeled as a Gaussian function of 550 µm in the propagation direction, with

density 1017 atoms/cm3.
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-2 mm, (c) (d) -1 mm, (c) (g) 1 mm, and (d) (h) 2 mm respect to the focus positions,

respectively. The dots represent the experimental results, whereas the results of the

simulations are presented in the dashed red lines.

The agreement between our theoretical and experimental results confirms that there

is an optimal iris diameter in which the harmonic signal is higher, leading to an increase

by a factor up to 8 in the harmonic yield. Also, as explained above, phase-matching

conditions when the jet is located after or before the focus are different, therefore the

enhancement turns out to be higher when the gas jet is placed before the focus. In any

case, the existence of an optimal aperture is a surprising fact, since our laser parameters

are chosen to minimize the effect of the aperture in all the phase-matching contributions

that are usually considered (i.e. those affecting the longitudinal coherence length). In

Fig. 3.26 we present the spatial maps of the 19th harmonic for a driving laser beam

non-apertured (left column) and apertured by a 10.5 mm iris diameter (right column),

for a gas jet placed at the same positions as in Fig. 3.25. The iris diameter corresponds

to the one in which the detected signal in the experiment was optimal.

There are two main conclusions to be drawn from these maps. On the first hand,

for a gas jet placed at ±2 mm, the longitudinal coherence length associated to phase-

matching remains very similar (left-right arrows), as expected from our parameter

choice. As a consequence, the higher yield of the apertured beam can not be attributed

to the optimization of the longitudinal phase-matching, as was the case in Kazamias’

experiment [134]. Our simulations demonstrate that the enhancement of the yield when

aperturing is a direct consequence of the transversal coherence length. In addition,

as explained above, this effect is more acute before the focus, where the transversal

coherence length is higher. This behavior can be also observed in our experimental

results, in which the enhancement obtained when aperturing is substantially higher

when the gas jet is placed at -2 mm than at 2 mm respect to the focus position (see

Fig. 3.25).

On the other hand, if we move the target towards the focus (positions ±1 mm),

the longitudinal coherence length plays an important role when aperturing. Both,

transversal and longitudinal phase-matching, are relevant, and thus, the enhancement

is due to those two factors.
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Figure 3.26: Spatial maps of the detected 19th harmonic for a driving laser beam non-

apertured (left column) and apertured by a 10.5 mm iris diameter (right column), for a gas

jet placed at a b -2 mm, c d -1 mm, e f 1 mm, and g h 2 mm respect to the focus position.

The simulation parameters correspond to the same as in Fig. 3.25. The longitudinal and

transversal coherence lengths are represented as white left-right and up-down arrows.
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3.4 High-order harmonic generation driven in a semi-infinite

gas cell

In the previous sections of this chapter we have studied the HHG process from gas jets,

of lengths below 1 mm. Here we will study HHG in a ‘semi-infinite’ gas cell (SIGC),

a geometry proposed in 2001 by Papadogiannis et al. [136]. The SIGC consists of

an entrance window far away from the focal region to avoid any non-linear effects in

the entrance area, and an exit composed by a metal plate with a laser-drilled pinhole,

which assures an abrupt transition to vacuum. In particular, we are going to study

theoretically the dependence of the harmonic radiation generated in a SIGC filled with

xenon upon the pressure and the focus position. Our results will be compared with the

experimental findings obtained in the group of M. Kovačev at the Universität Hannover.

Figure 3.27: a Single-atom HHG spectra in xenon computed by (dark blue) 3D TDSE,

(light blue) SFA+ and (pink) SFA+ with the transversal saddle point approximation. The

driving laser pulse is modeled as a sin2 at 780 nm, 2.9 cycles (7.5 fs) FWHM, with peak

intensity ) 1.26× 1014 W/cm2. b Transmission through 2 mm of xenon gas at a pressure

of (red) 5 mbar, (green) 8.75 mbar, and (orange) 15 mbar (data obtained from [98]).

In Fig. 3.27a we present the single-atom HHG spectra in xenon computed by (dark

blue) 3D TDSE, (light blue) SFA+ and (pink) SFA+ with the transversal saddle point
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approximation. The laser pulse envelope is modeled as a sin2 function at 780 nm, 2.9

cycles (7.5 fs) FWHM, with peak intensity ) 1.26×1014 W/cm2. In the following we will

use the SFA+ approach including the saddle-point approximation in the momentum

plane transverse to the polarization of the field (see section 1.3.1). This allows us

to compute the single radiator yield within few seconds, and therefore, reduces the

computational time needed for the long targets used in a gas cell configuration.

As it was shown in section 2.3.4, the absorption in xenon becomes a relevant process

when propagating high-order harmonics over distances above one millimeter, in contrast

to other gases as hydrogen or helium. In Fig. 3.27b we present the transmission through

2 mm of xenon gas at three different pressures: (red) 5 mbar, (green) 8.75 mbar, and

(orange) 15 mbar. Comparing Figs. 3.27a and 3.27b, we can observe that low order

harmonics (<15th) are strongly absorbed, whereas the xenon cell is transparent for

the highest orders (> 21st). In this section we will focus our attention to the 17th

harmonic, therefore, being the absorption a critical parameter on its propagation.

Figure 3.28: Schematic setup for the simulation of HHG driven in a semi-infinite gas cell

(SIGC), modeled by a homogeneous xenon cell of variable density (1017-1018 atoms/cm3)

and 4 cm in length. The coordinate origin is placed at the exit of the SIGC (z=0). The

Gaussian laser beam, of waist W0 = 38 µm is focused at zf , and the laser pulse envelope

is modeled as a sin2 function at 780 nm, 5.8 cycles (15 fs) FWHM, with peak intensity

) 1.26× 1014 W/cm2 .

In Fig. 3.28 we present a schematic setup of our simulation. The semi-infinite

gas cell (SIGC) is modeled by a homogeneous xenon slab (i.e. cell) of variable density

(1017-1018 atoms/cm3) and 4 cm in length. We use directly as an input a Gaussian laser
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beam with waist W0 = 38 µm (radius), and focused at the position zf . The coordinate

origin of our system is placed at the exit of the SIGC. The laser pulse envelope is

modeled as a sin2 function at 780 nm, 5.8 cycles (15 fs) FWHM, with peak intensity

) 1.26 × 1014 W/cm2. We compute the gas density from the pressure following the

ideal gas law.

Before implementing high-order harmonic propagation, let us first study how the

single-atom generation is limited by the absorption, depending on the pressure and the

focus position in the SIGC. In Fig. 3.29 we present the single-atom HHG spectrum

along the propagation axis, weighted by the absorption over the length remaining until

the end of the cell (z = 0) as follows: from left to right, the focus position is changed,

being zf=-20 mm in the first column, and zf=0 mm in the latest; from top to the

bottom, the gas density is increased, from 0 mbar (i.e. no absorption) in the first row,

to 15 mbar in the latest.

Let us concentrate on the 17th harmonic order, which is highlighted in each plot of

Fig. 3.29. In the first row (no absorption), we can see that depending on the gas cell

position, the 17th harmonic can be generated in the cut-off or plateau regions. This is

detailed in Fig. 3.29a: near the focus position (zf=-20 mm) the driving field’s intensity

is maximal and the 17th harmonic is generated in the plateau region of the spectrum,

whereas away from the focus (zf >-18 mm or zf <-23 mm), the intensity is lower and

the harmonic is generated at the cut-off. For the sake of clarity, the position where the

harmonic is generated at the cut-off is indicated by red lines in the plots of Fig. 3.29.

Absorption plays a key role suppressing the harmonic radiated before the focus

(which falls deeper inside the medium). The absorption strength will move the genera-

tion region out of the focus towards the exit of the cell, moving the harmonic generation

from the plateau region to the cut-off region. For example, if the focus is placed at

zf = −15 mm, at 5 mbar, the 17th harmonic is essentially generated in the plateau

region, whereas at 15 mbar, at the cut-off. This difference is essential to explain the

characteristics of the signal arriving at the detector, as we will see later.

If we now take a look at the dependence of the complete spectrum upon the focus

position in Fig. 3.29, our expectations are in agreement with previous findings by M.

Kovačev’s group [137], that demonstrated experimentally that focusing further into the

gas cell leads to a suppression of the lower harmonic orders.
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Figure 3.29: Single-atom HHG spectrum along the propagation axis weighted by the

absorption over the length remaining until the end of the cell (z = 0). From left to right

the focus position is changed, being zf=-20 mm in the first column, and zf=0 mm in the

fourth; from top to the bottom the absorption increases with the gas pressure: from no

absorption (0 mbar) in the first row, to the absorption corresponding to 15 mbar in the

fourth.

Let us now study the phase-matching effects, including high-order harmonic prop-

agation. In Fig. 3.30 we show the angular profile of the 17th harmonic at the detector,

for a SIGC filled with xenon at 5 mbar (first column) and 15 mbar (second column)

pressures, and at different focus positions: (a) (b) -10 mm, (c) (d) -15 mm and (e) (f)

-20 mm. For the lowest pressure (5 mbar), the angular distribution is composed by

three peaks, describing a central spot, surrounded by a ring structure. This structure

is the result of the different phase-matching between short and long trajectories, as we

saw for a gas jet configuration in section 3.1. Therefore, this result is in agreement

with our previous discussion, as from Fig. 3.29 we have seen that the 17th harmonic is

generated at the focus and, thus, corresponds to a harmonic inside the plateau. Cor-

respondingly, at 15 mbar, the 17th harmonic is generated in the cut-off region, where
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Figure 3.30: Spatial profile of the 17th harmonic generated in a xenon SIGC with 5 mbar

(first column) and 15 mbar (second column) pressures, at different focus positions: a b -10

mm, c d -15 mm and e f -20 mm.

short and long trajectory contributions merge in a single one. This explains the uniform

peak structure obtained in the right column of Fig. 3.30. The two-peaked structure

in Fig. 3.30b can be explained as a intermediate situation, where the 17th harmonic

is close to the cut-off region, and short and long trajectory contributions are about to

merge into a single one, as it is obtained when moving the focus into the gas cell (Figs.

3.30d and 3.30f). Focusing closer to the exit of the SIGC will enable the generation of

the 17th harmonic order from the central focal area leading to a splitting similar to the

5 mbar case.

Now we will compare our results with the present experimental findings from M.

Kretschmar in M. Kovačev’s group [138]. The laser system consists on a chirped-pulse

amplification system (Dragon, KM Labs Inc.) that supplies 35 fs pulses with energy

of 1 mJ, centered at a wavelength of 776 nm, at a repetition rate of 3 kHz. The SIGC

consist of an approximately 50 cm long gas-filled chamber with an adjustable pressure

in the range from 1 to 100mbar. The main difference with our simulations is in the laser
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peak intensity, which in the experiment is estimated to be ) 1 × 1015 W/cm2. This

sets a limitation for the simulations, as this intensity falls into the barrier suppression

regime, in which SFA+ is not reliable. In addition, that intensity makes the application

of our propagation method very challenging. However, as it was shown experimentally

in [137], the main contributions to the detected harmonic signal come from the regions

in which the intensity is in the tunneling regime. For that reason, we have chosen in

our simulations a peak intensity of ) 1.26 × 1014 W/cm2.

As a consequence from our parameter choice, the pressure and focus position are

different from the simulations compared to the experiments. However, we have found

theoretical and experimental conditions that can be considered equivalent, as the ab-

sorption can be changed either by modifying the transmission coefficient (changing the

pressure), or by changing the focus position (i.e. the propagation length towards the

end of the cell). In the left column of Fig. 3.31 we plot the simulated profile of the

17th harmonic, when the focus is placed at zd=-15 mm, for different gas pressures. On

the other hand, in the right column of Fig. 3.31, we present the experimental profiles

obtained at 25 mbar, for different focus positions. Under these conditions, the profile

of the 17th shows a three-peak structure obtained in the plateau region –plots (a) and

(b)– that merges into a uniform profile coming from the cut-off region –plots (e) and

(f)–. As a consequence, we can interpret the experimental results in the same way as

we did for the simulations.

As we already saw in section 1.2.2, the coherence time gives us a direct measurement

of the spectral width of the harmonics, and thus the chirp in the harmonic emission,

which is different for short and long trajectories. Therefore, in a following step, the

on-axis and off-axis spatial regions that appear in Fig. 3.31b were characterized exper-

imentally by measuring its coherence time, using a Mach-Zender interferometric setup

[138]. The coherence time was found to be (15.5 ± 2.9) fs in the on-axis region and (3.9

± 0.6) fs in the off-axis region. As a consequence, the on-axis region is attributed to

originate from short trajectory contributions, whereas the off-axis ring-structures from

long ones.

We have performed a time-frequency analysis (TFA) over our simulated results to

confirm this behavior. In Fig. 3.32a we show the HHG spectrum for the case of 5 mbar

and zf = −15 mm, shown in Fig. 3.31a. As we can observe, different harmonics show

a different angular profile. To enhance the visibility of the 17th harmonic in the TFA,
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Figure 3.31: Comparison between the simulated and experimental spatial profile of the

17th harmonic. theory vs experiment. In the left column the simulated profile of the 17th

harmonic is showed for a focus placed at zd=-15 mm, and a 5 mbar, c 10 mbar and e 15

mbar. In the right column the experimental profile of the 17th harmonic in a 25 mbar gas

cell is presented when the focus is placed at b -10 mm, d -15 mm and f -15 mm.

we have reduced artificially the amplitude of the 15th and 19th harmonics, so the 17th

harmonic becomes the prominent one. Now, when performing a TFA with a Gaussian

window of 2.5ω0, the obtained information is mainly valid for the 17th harmonic. In Fig.

3.32b we show the TFA on-axis, whereas in 3.32c at 4.7 mrad off-axis, thus monitoring

the central and outer peaks obtained in Fig. 3.31a. We can observe that the emission

time of the 17th harmonic differs in 0.25T from on-axis to off-axis, thus corresponding

to the short and long trajectory recollisions for an harmonic in the plateau region (see

Fig. 1.5). As a consequence, we have confirmed also theoretically the short trajectory

origin of the central peak and the long of the outer peaks.

119

3/figures/fig20.eps


3. GENERATION AND PROPAGATION OF HIGH-ORDER
HARMONICS FROM NEAR-IR FIELDS IN RARE GAS TARGETS

Figure 3.32: a HHG spectrum simulated in a 5 mbar gas cell, when the focus is placed

at zf = −15 mm. The time-frequency analysis is presented for the harmonics detected

b on-axis and c 4.9 mrad off-axis. The HHG spectrum was modified in order to enhance

the visibility of the 17th harmonic in the time-frequency analysis. The emission time of

the 17th harmonic differs in 0.25T from on-axis to off-axis, being T the period of the laser

field.
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4

Generation and propagation of

ultra high-order harmonic from

mid-IR fields in waveguides

There is a basic interest in extending coherent radiation into the X-ray regime from the

fundamental and the technological points of view. Coherent X-rays would allow us to

develop new scenarios in high-energy physics, metrology, microscopy or femtochemistry.

Due to recent developments in intense mid-infrared (mid-IR) laser technology [139],

HHG has emerged as a potential tool to produce coherent X-rays up to the kilo-electron

volt (keV) regime. Advances in the understanding of macroscopic phase-matching have

made possible to generate bright, coherent, high-order harmonics in the keV region

from these mid-IR lasers. This has been recently demonstrated by an international

collaboration led by JILA (University of Colorado), and in which participated the

Technical University of Vienna, Cornell University and us [20]. Although the brightness

of HHG X-ray sources falls below those obtained with X-ray free electron lasers (XFEL),

the degree of coherence is superior, and the spectral phase and pulse form are regular

and repetitive. Moreover the whole source is tabletop and, therefore, can be potentially

adopted by many laboratories. In this chapter we will focus on the characterization

of the temporal coherence of the HHG X-ray sources, by performing single-atom and

propagation simulations of HHG driven by mid-IR sources.

On the other hand, as has been commented along this thesis, the quest to cap-

ture dynamical processes with ever finer time resolution on the time scale of atoms,
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molecules and, more recently, of electrons, is one of the motivations behind the devel-

opment of ultrashort light pulses [140, 141, 142, 143, 144, 145, 146, 147]. One of the

main results of this chapter is to demonstrate that the temporal structure of keV high

harmonic X-ray pulses differs substantially from those generated using near-infrared

pulses, especially at high photon energies. In particular, we will show that, although

the total width of the X-ray bursts spans femtosecond time scales, the pulse shows a sub-

attosecond structure due to the interference of high harmonic emission from multiple

re-encounters of the electron wavepacket with the ion. Regular zeptosecond waveforms

can be produced and manipulated by simply changing the driver laser wavelength, the

pulse length, the carrier-envelope offset, and inserting thin metal filters into the X-ray

beam. Moreover, the waveform produced corresponds to a 1 fs long envelope modulated

at 1.3 exahertz (EHz), which represents the highest frequency coherent waveform to

date. This new mechanism thus provides a simple and realistic route for breaking the

attosecond barrier, without any need to compensate for chirp.

We have divided this chapter into three sections. First of all, we will introduce the

mechanism of high-order harmonic generation as an efficient tool for obtaining X-rays

in the keV regime. Secondly, we will analyze the single-atom HHG calculations driven

by mid-IR laser pulses, analyzing in detail its temporal structure. As a consequence,

we will derive a route for obtaining pulse waveforms in the zeptosecond regime. Finally,

we will include propagation effects in order to compare our spectra directly with the

experiments, demonstrating the temporal coherence of the produced X-rays.

4.1 X-rays from ultra-high-order harmonic generation

As we already explained in section 1.1.3, from the cut-off law (4.1), we can find two

strategies for extending the maximum photon energy in the HHG process: to increase

the laser intensity and/or to increase the wavelength of the driving field. As an example,

in order to reach 1.5 keV photons, we can combine laser intensity and wavelength

following the blue line in Fig. 4.1.

In 2006, Seres et al. obtained keV harmonics using an 800 nm laser source, with an

intensity close to 1016 W/cm2 [148]. However, the efficiency of the generated radiation

was very low due to phase-matching. As it was explained in the previous chapters,
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Figure 4.1: Choice of intensity and wavelength of the driving field in order to gener-

ate X-rays from HHG. The blue line indicates the intensity and wavelength required to

obtain 1.5 keV photons, following the cut-off law. The red line indicates the pair inten-

sity/wavelength where optimal phase-matching conditions are achieved. Two experiments

have demonstrated the generation of keV X-rays: Seres et al. [148] at 800 nm and T.

Popmintchev et al. [20] at 3.9 µm. In this latter case, a brightness four to five orders of

magnitude higher was obtained.

phase-matching conditions during the propagation of the harmonics play an essential

role in the efficiency of the detected signal.

We have already seen in section 2.3.5 that optimal phase-matching can be achieved

if the harmonics are generated inside a waveguide [42, 99], fixing an optimal intensity

for each wavelength (represented as a red line in Fig. 4.1). As a consequence, the

scaling of the harmonic spectrum cut-off with the wavelength and the compromise with

the optimal phase-matching condition suggest that bright X-rays can be generated

efficiently using mid-IR lasers. These sources require a refined development of optical

parametric techniques (OP-CPA) for the mid-IR, which has been achieved recently

[139]. In 2012, the international collaboration led by JILA (University of Colorado at

Boulder) mentioned above, demonstrated the efficient generation of coherent X-rays:

> 1.6 keV radiation was obtained by combining up to 5000 photons of a mid-IR laser

field (3.9 µm in wavelength and ∼ 3 × 1014 W/cm2 peak intensity) focused in an

helium-filled waveguide [20].

In fact, optimal phase-matching is a stronger requirement when harmonics are gen-

erated with mid-IR fields. At the single-atom level, the efficiency for the generation of

123

4/figures/fig1A.eps


4. GENERATION AND PROPAGATION OF ULTRA HIGH-ORDER
HARMONIC FROM MID-IR FIELDS IN WAVEGUIDES

the highest harmonic orders is known to decrease drastically when increasing the driver

laser wavelength [40, 41] due to the spreading of the electron wavepacket during the

HHG process. Fortunately, this decrease in the single-atom efficiency can be balanced

by increasing the number of radiators in the macroscopic target under optimal phase-

matching conditions [149, 150]. As a result, in the collaboration mentioned above [20],

a brightness four to five orders of magnitude higher was obtained compared to the

previous work of Seres et al. [148].

When selecting the atomic species with which ultra-high order harmonic generation

has to be generated, one has to take into account the absorption cross-sections. For

instance due to the presence of L-shell absorption edges in neon and argon (870 eV

and 250 eV respectively), absorption at short wavelengths is much more pronounced

than in helium. As a consequence, helium becomes the best atomic medium for ultra

high-harmonic generation due to the absence of inner-shell absorptions [42].

We represent in Fig. 4.2 the transmission through one centimeter thickness of

hydrogen (pink), argon (green), helium (blue) and neon (red), with density ∼ 1019

atoms/cm3. In addition we indicate the energy of the 1000th, 3000th ad 5000th har-

monics for a 3.9 µm driving laser.

Figure 4.2: Transmission through a gas of density 1019 atoms/cm3 along 1 cm for hydro-

gen (pink), argon (green), helium (blue) and xenon (red). We indicate the energy of the

1000th, 3000th ad 5000th harmonics for a 3.9 µm driving laser. Data obtained from [98].
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4.2 Single-atom calculations: reaching the zeptosecond

timescale

The shortest light pulses to date are produced from the broad harmonic spectrum

resulting from the extreme nonlinear interaction of intense femtosecond lasers with

atomic or molecular gases. Attosecond pulses and pulse trains are obtained using a

filter to select the highest spectral contributions, that can support pulse durations

<100 attoseconds [21, 50], as it was explained in section 1.1.5. Isolation of a single

attosecond pulse from the train has also been reported recently [55, 56, 57].

From the Fourier indetermination, the minimum pulse duration that can be achieved

using this scheme scales inversely with the width of the harmonic spectrum. Therefore,

the enormous bandwidth of high harmonic X-ray emission driven by mid-IR lasers,

offer us the possibility of obtaining extremely short pulses. Based on these ideas, here

we present a new and realistic route for breaking the attosecond barrier, which is very

attractive in its simplicity because it does not require the chirp compensation of the X-

ray bursts. Our calculations show that the temporal structure of high harmonic X-ray

pulses generated using mid-IR lasers, differs substantially from those generated using

near-infrared lasers, especially at high photon energies. In particular, we show that,

although the total temporal width of the X-ray bursts spans femtosecond time scales,

they may exhibit a finer structure arising from the interference of X-ray emission due

to multiple rescattering of the laser-driven electron wavepacket with the ion.

Other alternative approaches to reach atto-zeptosecond timescales have been pro-

posed earlier [151], in the relativistic laser-plasma interactions at focused laser intensi-

ties above 1018 W/cm2 [152, 153], four orders of magnitude higher than in the present

proposal (1014 W/cm2).

In the following, we will introduce the modifications to our theoretical method,

needed to increase the efficiency of the computation in the mid-IR regime, and analyze

in detail the single-atom spectra and temporal waveforms that may be obtained in this

regime. We will see that those waveforms can be sculpted simply using thin metal filters

of various thicknesses, and adjusting the pulse duration and carrier-envelope phase of

the driving laser.
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4.2.1 Computing single-atom HHG in the mid-IR regime

Calculating high-order harmonic spectra driven by mid-IR lasers is a challenging task,

mainly because the excursion of the electron wavepacket in the laser field scales with

the square of the laser wavelength (λ). As an example, in the near-IR regime (λ =800

nm, I ) 3.6 × 1014 W/cm2) the maximum classical excursion of an electron in the

continuum falls around 1 nm, whereas in the mid-IR regime considered in this chapter

(λ = 4 µm, I ) 1.6 × 1014 W/cm2), it is around 40 nm. On the other hand, the ex-

cursion time for the higher energy electron recollisions is 1.7 fs in the near-IR, whereas

8.4 fs in the mid-IR (assuming this excursion time to be 0.63T , where T is the laser

period). The most precise theoretical method to compute the HHG spectrum, namely

the numerical integration of the 3D time-dependent Schrödinger equation (TDSE), re-

quires an extremely large space-time grid in order to ensure the numerical convergence.

For long driving laser wavelengths, therefore, it becomes mandatory to adopt simplified

models that speed up the computations without missing the relevant information.

We use the SFA+ approach described in section 1.3 [41], including the saddle-point

approach in the transverse momentum space (see 1.3.1). This allows us to compute the

single radiator yield within minutes for driving laser wavelengths in the mid-IR regime.

Figure 4.3 shows, as a particular example, the results of the SFA+ calculation

in comparison with the exact results of the 3D TDSE equation for a helium atom

interacting with a laser field of wavelength 1.6 µm. We emphasize that no rescaling is

done when comparing these spectra.

Figure 4.3: Single-atom HHG spectra in helium obtained using 3D TDSE (blue line)

and SFA+ (pink line) models, where the laser pulse is assumed to be a sin2 envelope of 1.4

cycles FWHM (7.7 fs), 1.6 µm wavelength and peak intensity of 3.5× 1014 W/cm2.
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4.2.2 Effects of high-order rescatterings

Let us now study in detail the single-atom HHG calculations in the mid-IR, using

driving laser intensities and wavelengths chosen to fulfill the optimal phase-matching

conditions. Figure 4.4 shows the results for the harmonic spectrum of the SFA+ calcu-

lation in helium driven by a laser of wavelength 3.9 µm and peak intensity 3.6 × 1014

W/cm2. The laser pulse is sculpted by a sin2 envelope of 2.9 cycles FWHM (37.4 fs).

The high-frequency part of the spectrum is computed after passing through a 0.1 µm

thick Al filter. As becomes evident, the harmonic radiation clearly extends into the

keV region (see inset on Fig. 4.4a). The corresponding electromagnetic field, which

consists of a carrier wave at 1 keV photon energy, is represented in Figure 4.4a (blue

line: intensity, red line: group delay, i.e. derivative of the spectral phase). To enhance

visibility, the time resolution for the phase derivative has been chosen to average the

additional fast oscillations that appear in the pulse train envelope.

The results show that the X-ray emission is composed of bursts of this carrier wave

with temporal widths of about 2 fs. This temporal structure has the same electron-

recollision origin as the attosecond pulse trains obtained using near-infrared laser wave-

lengths [48, 129, 154, 155]. The long durations of the bursts are a consequence of the

wider time-interval in which energetic electron recollisions take place, that scale linearly

with the driving laser wavelength. Interestingly, the atto-chirp is predicted to decrease

as λ−1. As a consequence, selecting a fixed HHG bandwidth, shorter X-ray pulses

would be obtained when moving to longer mid-IR laser wavelengths [40]. However,

under optimal phase-matching conditions, the generated phase-matched HHG band-

width increases as λ1.7, which effectively leads to the emission of chirped X-ray burst

of femtosecond durations.

Most interesting and new is the fine structure of super-high-frequency oscillations

that appears on some of the femtosecond HHG bursts. These structures are not ob-

served using near-IR driving laser wavelengths around 0.8 µm, and are only present

when mid-IR driving fields are used. In our simulations, they appear gradually during

the interaction, and mainly influence the femtosecond X-ray bursts generated on the

trailing part of the mid-IR pulse. As we will show later, the increasing contrast of the

oscillations leads to the splitting of these femtosecond bursts into waveforms of a few

attoseconds (or even hundreds of zeptoseconds) in duration.
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Figure 4.4: a Envelope of the X-ray bursts (blue line) and group delay (red line) obtained

using a 3.9 µm wavelength laser, at an intensity of 3.6 × 1014 W/cm2, and with a pulse

duration of 2.9 cycles, (37 fs) FWHM. The HHG spectrum is shown in the inset (pink line).

In the panels b to c, the spectral content of each burst is shown.

The physics underlying this waveform can be explained with the aid of the time-

frequency analysis shown in Figure 4.5b. This plot shows the correlation of the HHG

emission time with energy and, superimposed, the kinetic energy of the electrons at

the moment of rescattering resulting from a classical trajectory analysis (black circles).

The Gaussian spectral window to perform the time-frequency analysis was 13.5ω0 in

FWHM, being ω0 the fundamental frequency. The three series of circles correspond to

HHG emission from the first, second, or third consecutive rescatterings of the different

electron trajectories with the parent ion. Examples of the classical trajectories leading

to the three rescatterings are shown in Figure 4.4a for the HHG emission at 71 fs.

The appearance of a fine structure in the X-ray pulses in Fig. 4.4a is connected
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Figure 4.5: a Schematic of the driving field (grey-dashed line) and an example of the

interfering trajectories contributing to one of the X-ray fs burst of Fig. 4.4a at time 71

fs. b Time-frequency analysis (logarithmic scale), of the HHG spectrum shown in Fig.

4.4a. The black-dotted lines represent classical calculations of the electronic rescattering

energies of trajectories with different rescattering orders, which are more intense at the

trailing part of the pulse. The Gaussian spectral window to perform the time-frequency

analysis was 13.5ω0 in FWHM
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to the increase in relative strength of the HHG emission from the second and third

rescatterings of the electron wavepacket with the ion, as the driving laser wavelength

is increased. The interference structures become significant if the relative weights of

HHG emission from the first and subsequent rescatterings are comparable. This oc-

curs on the trailing edge of the laser pulse, where the efficiency loss associated with

electron wavepacket spreading for the second and third rescatterings is compensated

by the higher ionization rate when the electron was liberated into the continuum (the

ionization times are nearer to the peak of the mid-IR laser pulse for these high-order

rescatterings at the trailing edge). The different contributions of the multiple rescat-

terings can be identified in Figs. 4.4b-d, where we plot the spectral content of each fs

burst. Note that the relevance of higher-order rescatterings for strong-field processes at

longer wavelengths has been recently described in other contexts as well, theoretically

[40] and experimentally [156], although its technological potential was not identified.

For the sake of clarity, we present in Fig. 4.6 the single-atom HHG calculations

from helium driven by a longer laser pulse, 5.8 cycles FWHM (75 fs), i.e. twice the one

considered previously. The laser wavelength remains 3.9 µm and the phase-matched

peak intensity is now 3.3×1014 W/cm2, similar to the recent demonstration of efficient

generation of keV harmonics [20]. In 4.6a it is represented the carrier wave envelope

(blue line) and its averaged temporal phase derivative (red line). From the time-

frequency analysis in 4.6c, and the classical schematic representation in 4.6b, one can

observe that, for this longer laser pulse, the fourth and the fifth rescattering orders

become visible, leading to a more irregular structure of the fs X-ray bursts. Such high-

order re-encounters of the electron with the nucleus were also observed experimentally

in [156] for similar laser pulse durations.

Let us now identify the high-order rescattering effects in the exact 3D TDSE calcula-

tions. As mentioned above, resolving the 3D TDSE equation for those long wavelengths

its very challenging. However, we have made calculations at 2 µm, where the high-order

rescatterings are already present. In Fig. 4.7 we show the results of the SFA+ calcu-

lation in comparison with the exact results of the 3D TDSE equation for an helium

atom interacting with a laser field of wavelength 2 µm, and pulse duration 2.9 cycles

(19 fs) FWHM. Plot 4.7a shows the HHG spectra whereas the time-frequency analysis

is presented for (b) the 3D TDSE and (c) SFA+ calculations. We can observe that the

efficiency of the higher-order rescatterings is higher in the 3D TDSE than in the SFA+.
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Figure 4.6: a Envelope of the X-ray bursts (blue line) and group delay (red line) obtained

using a 3.9 µm wavelength laser, at an intensity of 3.3 × 1014 W/cm2, and with a pulse

duration of 5.8 cycles, (75 fs) FWHM. The HHG spectrum is shown in the inset (pink line).

b Schematic of the driving field (grey-dashed line) and an example of the five interfering

trajectories contributing to one of the X-ray fs bursts at 129 fs. c Time-frequency analysis

(logarithmic scale), where the Gaussian spectral window used was 13.5ω0 in FWHM.
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Figure 4.7: a HHG spectrum obtained with the 3D TDSE (blue line) and SFA+ calcu-

lations (pink line) obtained using a 2 µm wavelength laser, at a phase-matched intensity

of 4.7 × 1014 W/cm2, and with a pulse duration of 2.9 cycles, (19 fs) FWHM. The time-

frequency analysis (in logarithmic scale) and envelope of the X-ray bursts are shown for b

d the 3D TDSE and c e SFA+ calculations respectively.

This is translated into a more contrasted structure in the X-ray waveforms in the 3D

TDSE case (plot 4.7d) than in the SFA+ (4.7e). As a consequence, for longer wave-

lengths we have to take into account that the efficiency of higher-order rescatterings

increases when considering the exact 3D TDSE calculations.

In the following subsections we will filter temporally and spectrally the mid-IR HHG

spectrum. First, by properly filtering the different rescattering orders, we will see that

a fully contrasted waveform in the atto and zeptosecond timescales can be obtained.

Secondly, by spectrally filtering the high-frequency part of the HHG spectrum we will

find a route for manipulating the attosecond pulse train.
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4.2.3 Filtering in the temporal-domain: Zeptosecond waveforms

In this section, we show that the contrast interference due to HHG emission from

multiple rescattering events is significant enough to fully modulate the femtosecond

X-ray bursts into a waveform of extremely short keV pulses. By properly filtering the

different rescattering events, we will show that waveforms in the attosecond and even

zeptosecond time scales can be achieved.

In Figure 4.8 we present the detailed structure of one of the femtosecond X-ray

bursts (panel a) originated at the tail of the mid-IR pulse (of Fig. 4.5) used recently in

experiments [20]. The temporal structures of the bursts obtained by using Al filters of

different thicknesses, (c) 0.1 µm, (d) 0.5 µm, and (e) using a 0.1 µm Al filter combined

with an artificial high-pass filter, are compared with each other. As can be seen from

the spectra, the filters are chosen to select the contributions of the first (Al filter + high

pass filter), the first and second (Al filter of 0.5 µm) and all three (Al filter of 0.1 µm)

rescattering orders to the HHG spectra. The results clearly reveal the full modulation

of the femtosecond burst into a waveform of pulses of about 5 attoseconds in duration,

for this particular case. Note that each pulse in the train contains less than two cycles

of the keV carrier wave.

The beating structure is not regular since there are HHG contributions from mul-

tiple rescattering processes (see 4.8c). A more regular pulse train can be obtained by

increasing the thickness of the Al filter such that only the contributions of two rescatter-

ings can interfere (4.8d). As expected for an interference pattern, the time between two

consecutive bursts is given by T = 2π/∆E, where ∆E is the energy difference between

the two dominant energetic contributions (here arising from the first and the third

rescatterings). Finally, suppression of all but the first rescattering events leads to the

disappearance of the fine structure in 4.8e, which unequivocally demonstrates that the

interference effects are the origin for the attosecond fine structure in the femtosecond

X-ray bursts.

We can now identify two conditions for the generation of atto/zeptosecond wave-

forms using this new approach: (i) the interference of two –and only two– electron

wavepacket rescattering events in order to form a regular modulation, and (ii) compa-

rable strengths of the two contributions to the HHG emission in order to achieve good

contrast. Both requirements can be met using few-cycle mid-IR driven pulses, even
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Figure 4.8: a Detailed structure of an X-ray burst from the tailing edge of the keV

pulse train shown in Fig. 4.3 using an Al filter (0.1 µm thick), for a laser wavelength of

3.9 µm. The spectrum of the selected burst is shown in b for Al filters of 0.1 and 0.5 µm

thickness. Plots c and d show a magnification of the temporal structure for the two Al

filters respectively, whereas e corresponds to the X-ray field obtained by selecting only the

highest frequency contributions to the spectra (above the greened dashed line in b).
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without tailoring the spectra using filters (as was done for the results in Fig. 4.8d).

The short duration of the driver pulse acts as a temporal window, restricting the num-

ber of rescattering events, while the relative efficiency of the rescattering events can

be controlled using the carrier-envelope offset. With this understanding, we can now

predict the optimal driving laser parameters to use in order to generate sub-attosecond

waveforms. The number of rescattering events as well as their relative timing, and the

energy of the returning electron for each rescattering, can be estimated using classical

trajectory analysis. From these, the optimum driving pulse to meet condition (i) can

be found and the width of the pulses in the train can be estimated as T/2. Predictions

for T/2 as a function of the wavelength of a 1.5 cycle (FWHM) driver laser are shown

in Fig. 4.9. The intensities of the driver pulses are chosen to match those for which

optimal phase-matching is observed experimentally [9]. These simulations thus predict

that the attosecond barrier will be broken for mid-IR wavelengths of about 7.7 µm.

Figure 4.9: Predictions for the value of the width of each keV pulse in the train (T/2)

as a function of laser wavelength.

Now, we perform simulations at wavelength λ= 9 µm in order to identify the zep-

tosecond (zs) waveform formation. We have considered a driving laser field of the form

sin2(πt/2τp) sin(2πct/λ+φCEO) with intensity 3.4×1014 W/cm2 (ideal for macroscopic

phase-matched HHG at this laser wavelength), pulse duration τp= 43 fs (FWHM) and

carrier-envelope offset φCEO=-π/8 (see Figure 4.10a). The results for the generated

HHG spectrum (inset on left) after transmission through an 0.2 µm thick Al filter, are

shown in Fig. 4.10b. There are two femtosecond bursts emitted, and the second burst

is fully modulated into a zs waveform. In comparison with the 4 µm driver laser (shown
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Figure 4.10: a Schematic of the driving field (grey-dashed line), 1.5-cycle mid-IR laser

pulse with wavelength λ= 9 µm, macroscopic phase-matching intensity 3.4× 1014 W/cm2,

pulse duration τp= 43 fs (FWHM) and carrier-envelope offset φCEO=-π/8. The first and

second-order rescattering trajectories are drawn for a recollision time of 94 fs. b Envelope

of the X-ray bursts obtained from the driving laser field. Left inset: high-order harmonic

spectrum after an Al filter 0.2 µm. Right inset: spectral content of the second fs burst,

showing the contributions of the first and second rescattering trajectories. Panels c to e

detail the fine temporal structure of the second fs burst.
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in Fig. 4.4), for a 9 µm driver laser, the spectral cut-off is increased to 8 keV, while

the number of X-ray bursts emitted is smaller, as expected due to the few number of

cycles in the laser field. The value for the carrier-envelope offset of the laser pulse is

chosen to optimize the relative weight of the two rescattering contributions for the sec-

ond burst (inset on right) and, hence, the contrast of the pulse-train in the waveform.

Thus, the HHG emission presents interferences from only two rescattering events (see

Fig. 4.10a), each with comparable efficiency, and as a result, a zeptosecond waveform

is formed, as can be observed in Figs. 4.10c to e. The atto-to-zepto chirp associated

with the temporal distribution of each of the two rescatterings leads to the emission of

shorter keV pulses (0.72 as) on the leading edge (Fig. 4.10c), and longer pulses (1.32

as) on the trailing edge of the burst (Fig. 4.10e).

This new and straightforward route for generating as and zs waveforms is applica-

ble to keV high harmonic emission driven by mid-IR lasers. We emphasize that the

present scheme does not rely on compensating the atto-chirp, but rather makes use

of the fact that the relative strength of HHG emission due to multiple rescatterings

of the electron wavepacket becomes comparable using mid-IR laser wavelengths. By

controlling the duration and carrier-envelope offset of driving laser pulses above 7 µm,

the generation of a regular waveform consisting of trains of pulses with zeptosecond du-

ration is realizable. Although one can expect to generate even shorter X-ray pulses at

wavelengths much longer than 9 µm, one has to consider that at those wavelengths, the

drift associated with the magnetic term in the Lorentz force, would lead to a separation

of the electron trajectory by a distance too large to be compensated by the expansion

of the free wavepacket and, therefore, to a reduction of the harmonic yield. The evi-

dence of radiation bunches of zeptosecond scale opens the possibility of extending the

applications of femtochemistry and attophysics to the zeptosecond time scale.

Control of the relative efficiency using the carrier-envelope offset

The relative efficiency of the different rescattering orders can be controlled by modifying

the carrier-envelope offset of the driving pulse. In Fig. 4.11, we show the results of our

numerical simulations for a driving laser of the form sin2(πt/2τp) sin(2πct/λ + φCEO),

with wavelength λ= 9 µm, peak intensity 3.4× 1014 W/cm2, pulse duration τp= 43 fs

(FWHM) for carrier-envelope offset of (a) φCEO=-π/2,( b) φCEO=-π/4, (c) φCEO=0,

(d) φCEO=π/4. In each panel we show the envelope of the X-ray bursts (blue line) as
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Figure 4.11: Numerical simulations for driving laser pulses of the form

sin2(πt/2τp) sin(2πct/λ + φCEO), with wavelength λ= 9 µm, peak intensity 3.4 × 1014

W/cm2, pulse duration τp= 43 fs (FWHM), and for carrier-envelope offset of a φCEO=-

π/2, b φCEO=-π/4, c φCEO=0, d φCEO=π/4. In each panel we show the envelope of

the X-ray bursts (blue line) as they appear from the high-order harmonic spectrum after

transmission on an Al filter 0.2 µm thick, as well as the spectrum of the two main bursts

(pink line).
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they appear from the high-order harmonic spectrum after transmission on an Al filter

0.2 µm thick, as well as the spectrum of the two main bursts in each case. We can

observe how the relative weight between the first and second rescattering contributions

is modified as the carrier-envelope offset is changed. In panels (a) and (d), the relative

weight is substantially different so the beating contrast of the train of zeptosecond

pulses is low. In panels (b) and (c) the carrier-envelope phase chosen balances the

relative weight to nearly equal, so that full contrast is achieved. The case shown in Fig.

4.10 corresponds to the intermediate of (b) and (c).

Propagation effects in the zeptosecond waveform

The complete simulation of the HHG process needs to take into account propagation in

order to include phase-matching effects. For such long wavelengths (9 µm), computing

HHG propagation is not feasible using current state-of-the-art theory. However, we

have computed one-dimensional propagation for shorter wavelengths (2 µm), where

the fine modulations arising from the high-order rescattering events are present with

lower contrast.

We compute the field propagation from the single atom response using a scheme

based on the discrete dipole approximation (see section 2.5) assuming a plane wave

incident field. This assumption is based on the fact that we are implementing our

calculations in the optimal phase-matching regime [42], i.e. there is only a particular

intensity for which the harmonic fields propagate efficiently. Note that the intensity

selection for the optimal phase-matching is advantageous to minimize the intensity

dependence of the intrinsic phase. In addition, we include ionization, neutrals and group

velocity effects in the fundamental field phase. Absorption was taken into account in

the propagation of the harmonics.

In Figure 4.12a, we present the single-atom results of our numerical simulations

for a driving laser of wavelength λ= 2 µm, peak intensity 4.7 × 1014 W/cm2, and

pulse duration 19 fs FWHM (2.9 cycles). There is an attosecond modulation over the

femtosecond bursts related to the high-order rescattering events. In 4.12b we include

propagation, where the target is modeled as an helium gas of density 1018 atoms/cm3

and length 0.5 mm. It is observed that the modulations in the attosecond regime

are preserved when considering propagation. Thus, we expect that the atto/zepto

modulations are preserved when considering longer wavelengths and higher densities.
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Figure 4.12: a Single atom HHG pulse (blue line) for a driving laser of wavelength λ=

2 µm, peak intensity 4.7 × 1014 W/cm2, and pulse duration 19 fs FWHM (2.9 cycles).

The pink line in the inset represents the HHG spectrum. In b we present the propagated

HHG pulse and spectrum, where the target is modeled as an helium gas of density 1018

atoms/cm3 and length 0.5 mm.
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4.2.4 Filtering in the spectral-domain: Resolving different trajectory

contributions.

Let us now describe how to control the X-rays in the temporal domain by applying n

spectral filter. In principle it would be difficult to design specific filters that allow us

such manipulation at the high frequencies presented here, but other systems such as a

pair of gratings could be designed for that purpose.

The enormous broadband that offers the HHG spectrum obtained from mid-IR

lasers, gives us the possibility of select different rescattering events by spectrally filtering

the spectrum. In Fig. 4.13 we show a comparison of the capability of temporally

controlling the produced X-ray bursts for two different wavelengths: (left column) 3.9

µm and (right column) 1.6 µm. Plots (a) and (b) show the HHG spectra obtained, using

the corresponding phase-matching intensities at each wavelength, whereas plots (c) and

(d) show the corresponding time-frequency analysis. As discussed above, high-order

rescatterings are relevant at long wavelengths, thus being almost negligible at 1.6 µm.

We now apply a spectral filter with a Gaussian distribution of 50 eV FWHM, centered

at the photon energies corresponding to different multiples of the ponderomotive energy,

Up, as showed in (a) and (b). The central frequency of each filter is also indicated with

dashed lines in the TFA. In Figs. 4.13e to 4.13p we present the envelope of the X-ray

bursts (blue line) using the different filters, and its temporal phase derivative (red line).

There are interesting properties that can be extracted from the computed X-ray

bursts. First, let us concentrate on the number of X-ray bursts obtained in each half-

cycle. In the cut-off region (Figs. 4.13e and 4.13f, where the filter is centered at

3.1Up), one burst is obtained per half-cycle. As we move the filter towards the plateau

region, each burst is split into two bursts per half-cycle, each one corresponding to the

short and long trajectory contributions, as indicated by the slope of the temporal phase

derivative (positive for the short ones, and negative for the long). This splitting is more

precise for the longer wavelength. More interesting is the appearance of several bursts

per half-cycle when the filter is centered at 1.5Up and 1.1Up for the 3.9 µm case (Figs.

4.13m and 4.13o). Each burst corresponds to different rescattering orders as indicated

by the TFA. However, in the 1.6 µm case, the temporal structure with those filters

becomes irregular (Figs. 4.13n and 4.13p). As a result, by properly filtering the HHG

spectrum driven by mid-IR sources, one can obtain temporal structures corresponding

to different rescattering orders, and thus, with different phase properties.
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Figure 4.13: Control of the X-ray bursts obtained from HHG driven by (left column)

3.9 µm and (right column) 1.6 µm laser fields. The laser pulse envelope is modeled as

a sin2 function of 2.9 cycles FWHM, with macroscopic phase-matching peak intensities,

3.6 × 1014 W/cm2 at 3.9 µm and 5.2 × 1014 W/cm2 at 1.6 µm. a and b show the HHG

spectra, whereas c and d the corresponding time-frequency analysis. A spectral filter

with a Gaussian distribution of 50 eV FWHM is applied, centered at different multiples

of the ponderomotive energy, Up, as showed in a and b with different colors. The central

frequency of each filter is also indicated with dashed lines in the time-frequency analysis

(TFA). In the rest of plots we present the envelope of the X-ray bursts obtained after

applying the indicated filter.
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Let us now concentrate in the width of the X-ray bursts. In principle, from 50

eV photon bandwidth, 82.5 attosecond pulses could be obtained in the Fourier limit.

However, due to the chirp imprinted in the HHG process (red lines in Figs. 4.13e to

4.13p), the shortest pulses that we can achieve are longer than 100 as. In the single-

atom regime presented here, the shortest attosecond pulses are produced in the plateau

region, where the short and long trajectory contributions are well separated. Note that

although the bandwidth of the filter is the same, longer X-ray pulses are obtained for

the 1.6 µm case, as the chirp acquired over that bandwidth is higher.

Figure 4.14: Temporal envelope of X-ray bursts obtained from HHG driven by (left

column) 3.9 µm and (right column) 1.6 µm laser fields. The laser pulse is modeled as in

Fig. 4.13. A spectral filter with a Gaussian distribution of 150 eV FWHM is applied,

centered at different at a b 3.1Up, and c d 2.3Up.

In a next step, we increase the bandwidth of the spectral filter from 50 eV to 150 eV.

In principle, one would expect to obtain shorter X-ray pulses, as in the Fourier limit,

27.5 as pulses would be obtained. In Fig. 4.14 we present the X-ray bursts for the 3.9

µm (left column) and 1.6 µm (right column) cases, after applying the spectral filters

centered at 3.1Up and 2.3Up. First, we observe that the splitting between short and long

trajectory contributions is no longer achieved in the 1.6 µm, due to the broad bandwidth

considered. Secondly and more interesting, the X-ray bursts obtained are even longer

than in the previous case, where a narrower bandwidth was selected. This is a result of

the chirp imprinted during HHG, which prevents from obtaining shorter pulses at the

single-atom level. Post-compressing techniques or propagation effects would be needed

to compensate that chirp, allowing to obtain shorter attosecond X-ray pulses.

143

4/figures/fig6.eps


4. GENERATION AND PROPAGATION OF ULTRA HIGH-ORDER
HARMONIC FROM MID-IR FIELDS IN WAVEGUIDES

4.3 Propagation effects in ultra high-order harmonics driven

by mid-IR fields

Once we have studied the single-atom HHG driven by mid-IR laser sources, here we

will include propagation effects. As stated before, implementing propagation in such

long wavelengths is a challenging task, due to the large spatio-temporal grid required

for the single-atom computations. However, we have included some approximations in

order to reproduce the experimental results.

First, in the previous section we have analyzed the atto-to-zeptosecond structure

that arises in the X-ray bursts due to the high-order rescatterings. When considering

propagation, this effect becomes an issue to reach convergence. In order to avoid

the high-order rescatterings we have implemented a spatial mask in the single-atom

calculations that dimmes the higher-order electron rescatterings.

In Fig. 4.15a and 4.15c we show the single-atom HHG spectrum for 1 and 6 cycles

sin2 envelope laser pulse, with a wavelength of 3.9 µm and a peak intensity of 4.1 and

3. 3 ×1014 W/cm2 respectively. Figure 4.16a shows two cut-offs due to the different

ionization peaks present in the incident few-cycle laser field. In both simulations,

the highest harmonic cut-off reaches 1.6 keV, thus combining more than 5000 mid-IR

photons. In figures 4.15b and 4.16d we plot the corresponding temporal HHG pulse

(blue lines), showing a unique temporal burst in the 1-cycle case, whereas a train

of fs pulses for the 6-cycles laser field. In both cases each burst has a FWHM of 2

fs. The parabolic shape of the first derivative of the temporal phase (green curves)

shows contributions from both short (positive slope) and long (negative slope) electron

trajectories, thus exhibiting a temporal chirp. As can be noticed, the signature of

high-order rescatterings in the temporal domain has been removed.

In the experiment carried out by Kapteyn and Murnane’s group and Baltuška’s

group, six-cycle (80 fs) FWHM, 10 mJ pulses, centered at a wavelength of 3.9 µm,

were generated at 20 Hz as the idler output of an optical parametric chirped-pulse

amplification laser system [139]. X-rays were generated by focusing the laser beam

into a 200 mm diameter, 5 cm long, gas-filled hollow waveguide. High gas pressures

of helium up to 35 atm were used to increase the photon flux. The HHG spectrum

was then captured with the use of a soft X-ray spectrometer and X-ray charge-coupled

device camera. An scheme of the setup is shown in Fig. 4.16. The phase-matched HHG
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Figure 4.15: Calculated HHG a c spectral and b d temporal shape for single atom

driven by 1 cycle and 6 cycles sin2 envelope laser pulse, with a wavelength of 3.9 µm and a

peak intensity of 4.1 and 3. 3 ×1014 W/cm2 respectively. The green line in b and d shows

the temporal phase derivative (group delay).

measured extends to > 1.6 keV (< 7.7 Å), corresponding to an extreme > 5000-order

nonlinear process. An approximate brightness of 105 photons per shot (corresponding

to 106 photons/s at 20 Hz) is observed in a fractional bandwidth of 1% at 1 keV.

The spatial coherence of the produced X-ray beam was experimentally observed

in Young’s double-slit diffraction patterns [20]. This spatial coherence measurement

demonstrates that coherent diffractive imaging will be possible with near wavelength

spatial resolution, as has been achieved using HHG beams and synchrotron sources

in the EUV and soft X-ray regions [157, 158]. However, the characterization of the

temporal coherence is challenging, as its experimental verification would require the

development of characterization methods that can sample ultrabroad bandwidth X-ray

waveforms at different photon energies.

To predict the temporal properties of the HHG radiation, we have performed sim-
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Figure 4.16: Schematic illustration of the coherent kilo-electron volt X-ray supercontinua

emitted when a mid-IR laser pulse is focused into a high-pressure gas-filled waveguide. Six-

cycle (80 fs) FWHM, 10 mJ pulses, centered at a wavelength of 3.9 µm were focused into

a 200 mm diameter, 5 cm long, helium-filled hollow waveguide. Figure taken from [20].

ulations of high-order harmonic propagation. Field propagation is computed from the

single-atom response using the scheme based on the discrete dipole approximation (see

section 2.5) assuming a plane wave incident field, and including ionization, neutrals

and group velocity effects in the fundamental field phase. Assuming a plane wave is

reasonable since optimal phase-matching conditions selects an optimal intensity, and,

in addition, the multiatmosphere gas pressures required for phase-matched X-ray gen-

eration support laser beam self-confinement, giving rise to a high quality, flat-top beam.

Absorption was taken into account in the propagation of the harmonics. The attosec-

ond pulses have been computed by Fourier transformation of the harmonic spectrum

detected on-axis. The target is modeled as helium gas with a density of 5 × 1019

atoms/cm3. The disparity of the temporal scales involved in the computations (fem-

tosecond for the driving field and attosecond for the most energetic harmonics) together

with the high density used, requires an extremely precise computation. At present we

are able to demonstrate good convergence for propagation distances up to 20 µm, which
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correspond to the data presented here. In our calculations, the laser pulse is modeled

using a sin2 envelope of 6 cycles FWHM, 3.9 µm wavelength and phase-matching peak

intensity of 3.3×1014 W/cm2.

In Fig. 4.17 we show (a) the experimental and (b) theoretical results. Our calcu-

lations confirm the femtosecond time scale of the X-ray bursts after propagation. Our

calculated phase-matched HHG spectra agree well with those measured experimentally,

and show that the HHG chirp is well behaved over the near kilo-electron volt bandwidth

that, when compressed, is sufficient to support a single-cycle, 2.5-as pulse in the Fourier

limit. For 3.9 µm driving lasers in the single-atom case, contributions from the short

and long trajectories lead to a parabolic chirp (see Fig. 4.15), whereas after propaga-

tion, the phase-matched short trajectory contribution leads to a positive, quasi-linear

chirp, as can be observed in the inset of Fig. 4.17b. The current limit of theory allows

us to simulate HHG propagation over 20 µm distances at high pressures and predicts

that the uncompressed HHG temporal emission consists of a series of )three intense

bursts of 1- to 3-fs duration, due to the very long 13-fs period of the multicycle 3.9 µm

driving laser field. However, for longer propagation distances, bright HHG emission in

the form of a single isolated X-ray burst is expected. This is because phase-matching

is transient and favors X-ray emission from a single half cycle of the laser pulse where

the phase-matching is optimal. This has been verified experimentally in the EUV, even

without stabilizing the carrier wave with respect to the pulse envelope [42, 159]. Inter-

estingly, this work and past work predict that the HHG bursts are chirped, where the

amount of chirp scales inversely with laser wavelength for a given spectral bandwidth

[40].

On the other hand, as it was predicted in section 4.2, our simulations confirm

that the duration of each X-ray burst still spans femtosecond durations due to the

increased phase-matched HHG bandwidth, which scales almost as the square of the

laser wavelength.

As a conclusion, here we have demonstrated that the X-ray bursts obtained by ultra-

high order harmonic generation driven by mid-IR sources, exhibit temporal coherence.

The chirped X-ray supercontinua represent a promising multiple-atomic site probe with

sub-femtosecond time resolution, analogous to the chirped white light (visible) continua

used to probe many absorption features simultaneously, perfectly synchronized to the

driving laser.
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4. GENERATION AND PROPAGATION OF ULTRA HIGH-ORDER
HARMONIC FROM MID-IR FIELDS IN WAVEGUIDES

Figure 4.17: a Experimental HHG spectra emitted under full phase-matching conditions

as a function of driving-laser wavelength (yellow, 0.8 µm; green, 1.3 µm; blue, 2 µm;

purple, 3.9 µm). (Inset) Fourier transform-limited pulse duration of 2.5 as. b Calculated

spectrum and temporal structure of one of the phase-matched HHG bursts driven by a 6

cycles FWHM 3.9 µm pulse at a laser intensity of 3.3×1014 W/cm2.

148

4/figures/fig10.eps


Conclusions

We present in this thesis a novel method to compute high-order harmonic generation

(HHG) from the interaction of intense fields with macroscopic targets. Our starting

point is the single-atom model developed previously in the group (SFA+), and our

objective was to build the bridge from this microscopic level to the macroscopic case,

therefore, between fundamental theory to experiments. For this, we have developed

an original method to describe the high-order harmonic propagation. Our approach is

based in the integral solution of the wave equation, instead of resorting to its numerical

integration, as it is usually done. The main advantage of our approach is that it com-

putes directly the far field at the detector, so we can analyze the topology of the HHG

process throughout the macroscopic target, in terms of its contribution to the detected

field. Moreover, it offers numerical advantages in simplicity and speed, allowing us to

present the first results, to our knowledge, on high-order harmonic generation and prop-

agation at mid-infrared wavelengths of 4 µm and above. Using this method, we have

approached a series of experimental situations and drawn the following conclusions.

In a first set of simulations, we have studied the propagation of high-order har-

monics from near-infrared fields in rare gases. We have analyzed theoretically the

phase-matching conditions for different gas jet positions along the propagation axis,

and developed the corresponding experiments at the laser facility in the University of

Salamanca (under the guidance of Dr. Íñigo Sola). The agreement of our simulations

with the experiments, and with other results in the literature, has served as validation

of our code.

Once our code was corroborated, we analyzed theoretically the behavior of the

attosecond pulses obtained from HHG. In an original work, we have proposed a route

to directly compensate the chirp of the attosecond pulses by detecting them at a certain

angle from the propagation axis. Performing a time-frequency analysis, we identified

149



the interference between different quantum paths as the underlying mechanism for this

compensation. This was our first insight in how to observe and control the macroscopic

signatures of these single-atom processes.

In order to complete our understanding of phase-matching, we have developed a

study of the transversal coherence length, which is a concept that, although not new, is

usually considered not to be relevant for the understanding of harmonic propagation.

For that purpose, we have introduced harmonic-emission spatial maps as an original

theoretical tool to understand the phase-matching process. By studying theoretically

and experimentally the effect of aperturing the laser beam in the efficiency of the har-

monic signal, we have unequivocally identified the relevance of the transversal coherence

length for common parameters (i.e. not exotic) in HHG experiments.

In a next step, we have implemented a semi-infinite gas cell geometry in order to

give support to the experiments carried by M. Kovačev’s group at Universität Han-

nover (Germany). We found that in this the geometry, harmonic absorption plays a

relevant role, selecting the effective intensity at which each harmonic is generated. Dif-

ferent parameters as the gas pressure and focus position were changed to confirm our

expectations.

The second part of this thesis was aimed to simulate HHG driven by mid-infrared

laser sources. We adapted our method to this regime in collaboration with the theoret-

ical group of A. Becker and A. Jaron-Becker at JILA, University of Colorado (USA).

The main result was the description of the keV X-rays obtained by the experimental

group of M. Murnane and H. Kapteyn at JILA, University of Colorado (USA), that led

a joint collaboration with Technical University of Vienna (Austria), Cornell University

(USA) and us. In particular, since the experimental characterization of the temporal

coherence in this regime is challenging (it would require the development of character-

ization methods for ultrabroad bandwidth X-ray sampling), our simulations were used

to complement the experiment. As a result, we predicted that the X-rays are generated

in femtosecond bursts with a well-behaved chirp, thus demonstrating their temporal

coherence.

Finally, in a further exploration of the X-ray bursts driven by mid-infrared laser

sources, we found a route for obtaining soft X-ray waveforms in the zeptosecond regime

(1 zs=10−21 s). This effect is a consequence of the interference between different rescat-

tering orders of the electron wavepacket with its parent ion.
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Spanish summary / Resumen en

español

“Fuentes de luz coherentes de attosegundo basadas en la generación de

armónicos de orden elevado: influencia de los efectos de propagación”

Durante las últimas dos décadas, el avance en el campo de los láseres ultraintensos

y ultracortos ha mejorado nuestra comprensión de la materia sometida a campos láser

intensos. A diferencia de otros campos no perturbativos de la f́ısica, la disponibilidad

de la tecnoloǵıa de láseres intensos en laboratorios de tamaño medio a nivel mundial ha

proporcionado una fruct́ıfera interacción entre la teoŕıa y los experimentos. Esta tesis

es un ejemplo de esta interacción.

La radiación electromagnética intensa induce una fuerte respuesta no lineal en la

materia. Los electrones atómicos adquieren enerǵıa del campo láser, que puede ser

posteriormente liberada en forma de radiación coherente de alta frecuencia, en un

proceso conocido como generación de armónicos de orden elevado (HHG, procedente de

sus siglas en inglés). La ausencia de láseres convencionales a estas frecuencias elevadas

ha impulsado el interés tecnológico en el desarrollo de HHG como herramienta para

conseguir fuentes coherente de luz de longitud de onda corta. Hasta hace muy poco,

la tecnoloǵıa de láseres ultraintensos se limitaba a longitudes de onda del infrarrojo

cercano (alrededor de 800 nm) y la conversión en armónicos de orden elevado se limitaba

a la región del ultravioleta lejano (XUV). Actualmente, con la mejoŕıa de las técnicas

de inversión paramétrica, este ĺımite se encuentra en los rayos X blandos.

Sin embargo, desde el inicio se reconocieron las aplicaciones potenciales del proceso

HHG, más allá de las naturales de una radiación coherente de alta frecuencia. El
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espectro de HHG consiste en un peine de armónicos que se extienden hasta la deno-

minada frecuencia de corte. En la región espectral cercana a este corte, los armónicos

tienen intensidades similares y, lo que es más interesante aún, su distribución de fase

espectral es suave. Con estas dos premisas, tras filtrar el espectro de baja frecuencia, la

radiación resultante se corresponde a un tren de pulsos ultracortos en la región XUV,

con duraciones en torno a unos cuantos centenares de attosegundos (1 attosegundo =

10 −18 segundos), espaciadas regularmente cada medio ciclo del láser incidente. Tras

su confirmación experimental a comienzos del siglo XXI, éstos son considerados los

pulsos de luz coherente más cortos jamás creados. Esta tecnoloǵıa está dando sus

primeros frutos, pues ya se han identificado distintas aplicaciones para discriminar

procesos ultrarrápidos (en el régimen de los attosegundos) en la dinámica de sistemas

f́ısicos, qúımicos y biológicos.

El objetivo de esta tesis es realizar una contribución novedosa y original en este

campo. El núcleo principal de este estudio consiste en el desarrollo de métodos teóricos

para simular los experimentos. Esta estrategia contiene una vertiente doble. En primer

lugar, la teoŕıa se utiliza para comprender los resultados obtenidos experimentalmente.

Para ello hemos desarrollado nuestros propios experimentos (bajo la dirección del Dr.

Íñigo J. Sola) que contrastamos directamente con los resultados teóricos y, además,

hemos colaborado con dos grupos experimentales a nivel internacional con el objetivo

de simular sus experimentos. En segundo lugar, hemos aplicado nuestra teoŕıa para

predecir nuevos procesos f́ısicos y, de este modo servir de gúıa para la realización de

nuevos experimentos.

El punto de partida de esta tesis se basa en la teoŕıa SFA+, desarrollada previa-

mente en el Área de Óptica de la Universidad de Salamanca, para el cálculo del proceso

de generación de armónicos de orden elevado en un solo átomo, a nivel microscópico.

Este método, aśı como una extensa introducción al proceso HHG, se expone a lo largo

del caṕıtulo 1. Nuestro primer objetivo ha sido desarrollar un esquema de propa-

gación de los armónicos de orden elevado que permite la simulación del proceso a escala

macroscópica, de manera que la teoŕıa sea comparable a los experimentos. Para ello,

hemos implementado una nueva técnica de propagación basada en la aproximación

dipolar discreta. Esta técnica, aśı como los fundamentos para la comprensión de la

propagación de armónicos de orden elevado, se desarrollan en el caṕıtulo 2. Nuestro

método ha sido publicado en Physical Review A 82, 033432-1-11 (2010).
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En el caṕıtulo 3 estudiamos la propagación de armónicos de orden elevado gene-

rados por campos láser de longitud de onda en el infrarrojo cercano, focalizados en

chorros o celdas de gas de baja densidad. Como primer test, hemos analizado teórica

y experimentalmente el cambio en las condiciones de ajuste de fases que resulta de

situar el chorro de gas en distintas posiciones a lo largo del eje de propagación. Una

vez validado nuestro método teórico experimentalmente, proponemos una alternativa

para acortar los pulsos de attosegundo, mediante su detección bajo distintos ángulos

desde el eje de propagación. Este resultado ha sido publicado en Journal of Physics

B: At. Mol. Opt. Phys. 45, 074021 (2012). Posteriormente presentamos un estudio

de la longitud de coherencia transversal, comparando nuestros resultados teóricos y

experimentales, en un trabajo que ha sido enviado recientemente a la revista cient́ıfica

Physical Review A, (2013). Finalmente, hemos implementado la geometŕıa de una celda

de gas semi-infinita en nuestro código de propagación, con el objetivo de comprender

los resultados experimentales obtenidos por el grupo de M. Kovačev, en la Universidad

de Hannover (Alemania). El resultado de esta colaboración ha sido enviado a la revista

cient́ıfica Pyhsical Review A, (2013).

En el caṕıtulo 4 hemos modificado nuestro método para estudiar la generación

armónicos de orden ultra-elevado, producidos utilizando láseres de longitud de onda en

el infrarrojo medio (aproximadamente de 4 µm), en colaboración con el grupo teórico

de A. Becker y A. Jaron-Becker, del JILA, en la Universidad de Colorado (EEUU).

El resultado principal de este trabajo consiste en la demostración de la coherencia

temporal de los rayos X con enerǵıa de kiloelectronvoltio obtenidos en el grupo expe-

rimental de M. Murnane y H. Kapteyn en el JILA, Universidad de Colorado (EEUU),

que lideró una colaboración internacional en la que también participaron la Universidad

Técnica de Viena (Austria), la Universidad de Cornell (EEUU) y nuestro grupo. El

resultado fue publicado en la revista Science 336, 1287 (2012). Como continuación a

este trabajo, y gracias al desarrollo de nuestros métodos teóricos, hemos derivado un

camino para obtener pulsos de luz de rayos X en el régimen de los zeptosegundos (1

zeptosegundo=10−21 segundos). Este trabajo, que hemos realizado en colaboración con

los grupos teórico y experimental del JILA, ha sido enviado recientemente a la revista

cient́ıfica Physical Review Letters, (2013).
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Caṕıtulo 1. Generación de armónicos de orden elevado y

pulsos de attosegundo

Este caṕıtulo está concebido como una introducción a los fundamentos de los fenómenos

de campos fuertes, con especial énfasis en aquellos aspectos relevantes para la generación

de armónicos de orden elevado (HHG) y la producción de pulsos de attosegundo.

Cuando la materia interacciona con campos suficientemente intensos, su dinámica

se convierte en no lineal. Las cargas excitadas, principalmente electrones, rad́ıan a

frecuencias distintas de las del campo incidente. Cuando la interacción se extiende

durante varios ciclos, la emisión de radiación se produce en múltiplos enteros de la

frecuencia fundamental, conocidos como armónicos. En la figura S1 presentamos el

espectro t́ıpico de HHG. Dicho espectro se compone de unos cuantos armónicos de

orden bajo cuya intensidad decrece exponencialmente siguiendo una ley perturbativa,

seguidos por una amplia región de armónicos con intensidad similar, conocida como

plateau. El plateau se extiende hasta la denominada frecuencia de corte (cut-off ), que

viene dada por

!ωmax = Ip + 3.17Up. (4.1)

siendo Ip el potencial de ionización y Up la enerǵıa ponderomotriz.

Figura S1. Esquema del espectro de HHG generado en el régimen de ionización túnel y

compuesto por armónicos cuya frecuencia es un múltiplo impar de la frecuencia fundamen-

tal. Dicho espectro se compone de unos cuantos armónicos de orden bajo, cuya intensidad

decrece exponencialmente siguiendo una ley perturbativa, seguidos por una amplia región

de armónicos con intensidad similar, conocida como plateau. El plateau se extiende hasta

la denominada frecuencia de corte. La intensidad está representada en escala logaŕıtmica.
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En la actualidad, las propiedades básicas del espectro de armónicos de orden eleva-

do son bien conocidas (para más información, recomendamos [4, 5, 6, 7, 8, 9, 10]).

Su tratamiento teórico admite distintos niveles de descripción desde el clásico, al

semiclásico o cuántico.

El primer modelo clásico que surgió para explicar el proceso de HHG de una forma

intuitiva fue propuesto por Corkum [16] y Kulander y Schafer [45]; es conocido como

el modelo de los tres pasos. De esta forma, un electrón es extráıdo del átomo por

medio de ionización túnel en un primer paso. A continuación, el electrón es acelerado

por el campo láser que, debido a su carácter oscilante, lo acelera contra el ión del

que procede. En un el último paso, el electrón recolisiona con el ión, emitiendo los

armónicos de alta frecuencia. Resulta de especial interés el hecho de que en cada medio

ciclo del láser incidente, existen dos posibles trayectorias electrónicas que dan lugar a la

misma enerǵıa cinética en el momento de la recolisión y, por tanto, al mismo armónico.

Estas trayectorias se conocen, acorde con su tiempo de excursión, como trayectorias

cortas y largas. Dado que distintas trayectorias electrónicas recolisionan en tiempos

diferentes, la radiación emitida está chirpeada (distintos armónicos se emiten en tiempos

diferentes).

Una vez presentadas las caracteŕısticas básicas del espectro de HHG, obtenidas a

partir del modelo clásico, hay un enorme interés en desarrollar modelos cuánticos para

describir de forma más rigurosa el proceso de generación de armónicos. El modelo

exacto consiste en resolver la ecuación de Schrödinger dependiente del tiempo (TDSE).

Sin embargo, dicha resolución requiere de recursos computacionales muy exigentes,

y resulta imprescindible el desarrollo de métodos aproximados. Entre ellos, el más

utilizado se basa en el formalismo S-matrix combinado con la aproximación de campo

fuerte (SFA) [58]. Este método, combinado con la aproximación semiclásica de punto

de silla (saddle-point) [63], es el más utilizado en la actualidad.

Sin embargo, nosotros utilizaremos el método cuántico SFA+ desarrollado previa-

mente en la Universidad de Salamanca [41], que además de no incluir la aproximación

de punto de silla, incluye el efecto del campo láser sobre el estado fundamental durante

la etapa de recolisión; por tanto, manteniendo la descripción cuántica del proceso.
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Caṕıtulo 2. Cálculo de la propagación de armónicos de

orden elevado

El objetivo de este caṕıtulo es establecer la conexión entre la radiación armónica emitida

por un solo átomo y la emitida por una muestra macroscópica como ocurre en los

experimentos. Este último caso, desde un punto de vista fundamental, se correspon-

de con la suma coherente de la radiación emitida en cada átomo o molécula de la

muestra. Sin embargo, debido a distintos efectos que analizamos en este caṕıtulo,

la suma coherente no siempre es óptima, ya que la radiación emitida desde distintos

puntos de la muestra puede no estar en fase. Este fenómeno, de vital importancia en

los experimentos de HHG, se conoce como ajuste de fases (phase-matching).

Para entender de forma sencilla el proceso de ajuste de fases, consideremos un

modelo simple formado por dos átomos situados a lo largo del eje de propagación (z)

tal y como se indica en la figura S2. Si colocamos un detector a una distancia zD, el

armónico de orden q detectado se corresponde con la interferencia entre la radiación

armónica generada en cada átomo, propagada hasta el detector, que vendrá dada por

Edet = eiqk1z1eikq(zD−z1) + eiqk1z2eikq(zD−z2) ∝ cos(∆kqL/2) (4.2)

donde L = z2 − z1 y ∆kq se conoce como el desajuste de fases (phase-mismatch).

La señal en el detector será máxima cuando ∆kq = 0, es decir, cuando estemos en

condiciones óptimas de ajuste de fase.

Figura S2. Esquema de dos átomos para entender el ajuste de fases (phase-matching)

que tiene lugar en la propagación de armónicos de orden elevado.

En un experimento de HHG, el ajuste de fases vendrá dado por distintas contribu-

ciones,

∆kq ) ∆kgeomq +∆kfq +∆kbq +∆kintq (4.3)
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donde ∆kgeomq proviene de las variaciones espaciales de la fase, debido a la geometŕıa

de focalización (como por ejemplo, la fase de Gouy), ∆kfq está asociado a la presencia

de cargas libres en el medio, provenientes de su ionización, ∆kbq describe el efecto de

los átomos neutros en el ı́ndice de refracción y ∆kintq se corresponde con la fase del

armónico, intŕınseca al proceso de generación.

Nuestra principal aportación en esta tesis consiste en la realización de un código

de propagación de armónicos. Para ello, en vez de resolver la ecuación de ondas,

como se hace normalmente [37, 82, 83], hemos tomado un camino alternativo, en el que

utilizando su solución integral [89], consideramos el medio de interacción como una suma

discreta de emisores de radiación. La radiación de cada uno de los emisores (en nuestro

caso, átomos) viene calculada por el método SFA+, descrito en el caṕıtulo anterior. De

esta forma, incluimos automáticamente los efectos geométricos e intŕınsecos del ajuste

de fases. Para incluir los efectos del ı́ndice de refracción en la propagación del campo

fundamental (básicamente, cargas libres y átomos neutros), recurrimos a expresiones

anaĺıticas. En la figura S3 mostramos un esquema de nuestro método de propagación.

Figura S3. Esquema de nuestro método para calcular la propagación de armónicos de

orden elevado. El medio de interacción, en este caso un chorro de gas, se compone de una

serie discreta de emisores de radiación, situados en la coordenada rj . La detección de la

radiación tiene lugar a una distancia |rd| del centro de la muestra, O, y se conforma de

una serie discreta de detectores situados en distintos ángulos, θd.
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Incluso para las densidades bajas de gas que se tienen en los experimentos t́ıpicos

de HHG, el número de emisores es extremadamente elevado (en torno a 1012). A

pesar de utilizar métodos aproximados para el cálculo de HHG en un solo átomo, el

cálculo para todos los átomos de la muestra se vuelve altamente complicado. Para

reducir el número de cálculos, utilizamos la aproximación dipolar discreta [111, 112],

que consiste en dividir la muestra en un número discreto de esferas, cada una de ellas

conteniendo varios átomos. De esta forma, conseguimos reducir el número de cálculos

a 105, manteniendo toda la información del proceso.

Caṕıtulo 3. Generación y propagación de armónicos de

orden elevado por láseres en el infrarrojo cercano en gases

de baja densidad.

En este caṕıtulo estudiamos la generación y propagación de armónicos de orden elevado

mediante láseres cuya longitud de onda está en el infrarrojo cercano (principalmente

láseres de titanio:zafiro, de 800 nm). En concreto estudiamos dos tipos de geometŕıa

del blanco: chorros y celdas de gas de baja densidad (1017-1018 átomos/cm3).

En primer lugar, nos centramos en el estudio de las condiciones de ajuste de fases

en un chorro de gas, analizando en detalle la variación de las distintas contribuciones

según la posición del chorro respecto al foco. Resulta de especial interés el signo similar

u opuesto de las contribuciones de la fase intŕınseca y geométrica dependiendo de la

posición del chorro. De este modo, si el chorro está situado delante del foco, ambas

contribuciones se suman, dando lugar a una mayor variación de la fase a lo largo del

eje de propagación. Sin embargo, después del foco se compensan, de forma que nos

acercamos más a la condición de ajuste de fases (∆kq = 0) y por tanto, la señal

detectada es mayor. Además, el comportamiento de la fase intŕınseca depende de la

trayectoria seguida por el electrón (corta o larga). De esta forma, situando el chorro de

gas antes del foco, las trayectorias cortas dominan si se detectan en eje, mientras que

las largas van ganando peso según aumentamos el ángulo de detección. Por contra, si

el chorro de gas está situado después del foco, las trayectorias cortas dominan en todo

el espacio angular de detección.

Estas caracteŕısticas de ajuste de fases se pueden observar en la figura S4, donde

presentamos distintos perfiles angulares del espectro de armónicos, para distintas posi-

158



ciones del chorro de gas respecto del foco. Cuando el chorro está colocado antes del

foco, observamos unos anillos correspondientes a la interferencia entre trayectorias cor-

tas y largas. Sin embargo, después del foco, los perfiles son más uniformes (ya que

predominan las trayectorias largas), y además, la señal detectada es mayor, acorde a

lo explicado anteriormente.

Figura S4. Perfil angular del espectro de armónicos de orden elevado (en escala

logaŕıtmica), generados en un chorro de gas de hidrógeno situado en distintas posiciones

respecto al foco del haz: -2 mm, -1 mm, 0 mm, 1 mm y 2 mm. En el eje horizontal de cada

gráfica representamos el ángulo de detección; en el vertical, el orden armónico. El pulso

láser simulado es de 7.7 fs, 800 nm y con intensidad pico de 1.57× 1014 W/cm2.

Estas simulaciones teóricas, cuyos resultados reproducen los ya sabidos en la comu-

nidad cient́ıfica [70, 85, 108, 122], han sido contrastadas satisfactoriamente con nuestros

experimentos, llevados a cabo en la Universidad de Salamanca bajo la tutela del Dr.
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Íñigo J. Sola. De esta forma, hemos validado nuestro código de propagación.

En segundo lugar, hemos hecho un análisis teórico sobre la reducción de la duración

de los pulsos de attosegundo cuando se detectan a un cierto ángulo. Cuando el chorro

de gas está situado antes que el foco, hemos visto que, dependiendo del ángulo de

detección, las trayectorias cortas y largas interfieren. Hemos encontrado una situación

en la cual las trayectorias largas, generadas en un determinado instante de tiempo,

interfieren temporalmente con las cortas, generadas en el siguiente medio ciclo, dando

lugar a la reducción de los pulsos de attosegundo generados, como mostramos en la

figura S5.

Figura S5. Distribución temporal del tren de pulsos de attosegundo obtenido cuando los

armónicos se detectan a en eje, y b bajo un ángulo de 3.3 mrad, para un chorro de gas

situado 1 mm antes del foco. El pulso incidente es de 2.9 ciclos (7.7 fs), 800 nm e intensidad

en el foco de ) 2.45 × 1014 W/cm2. Podemos observar cómo la anchura de los pulsos de

attosegundo es menor cuando son detectados fuera de eje.

Hasta ahora sólo nos hemos referido al ajuste de fases longitudinal. Con el objetivo

de obtener una interpretación más completa de la propagación de armónicos de orden

elevado, hemos analizado teórica y experimentalmente la influencia del ajuste de fases

transversal. Para ello, hemos diseñado un experimento, en el cual diafragmando el haz

láser incidente [134], conseguimos aumentar la eficiencia de los armónicos detectados.

Este efecto lo achacamos uńıvocamente al efecto relevante que tiene el ajuste de fases

transversal cuando el haz láser no está diafragmado, gracias al post-análisis realizado

teóricamente (ver figura S6).

En último lugar, hemos adaptado nuestro código de propagación para simular HHG

en una celda semi-infinita de gas, con el objetivo de dar soporte a los resultados expe-

rimentales llevados a cabo en el grupo de M. Kovačev en la Universidad de Hannover.

Variando la presión de la celda y la posición del foco en la misma, la mayor o menor
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absorción selecciona la intensidad con la que se genera un determinado armónico, es

decir, en qué región del espectro se genera (plateau o cut-off ). Esto tiene una conse-

cuencia directa en la estructura y divergencia del perfil espacial de los armónicos, lo

cual ha sido identificado teórica y experimentalmente.

Figura S6. Señal detectada del armónico a 17, y del b 19, para un chorro de gas situado

2 mm antes que el foco. El resultado experimental se muestra con puntos, mientras que

el teórico se corresponde con la ĺınea roja. En la fila de abajo se muestran los mapas de

la detección del armónico 19 cuando c el haz no está diafragmado, y d tras pasar por

un diafragma de 10.5 mm de diámetro. El fondo representa la amplitud del armónico,

mientras que las flechas indican su fase, en representación polar. De esta forma podemos

identificar la longitud de coherencia como la distancia entre dos flechas de sentido opuesto.

Dado que la longitud de coherencia transversal aumenta considerablemente al diafragmar

el haz, y la longitudinal se mantiene similar, el aumento de la seńal detectada al diafragmar

lo achacamos al ajuste de fases transversal.
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Caṕıtulo 4. Generación y propagación de armónicos de

orden ultra-elevado por láseres en el infrarrojo medio en

gúıas de onda.

Como consecuencia del desarrollo de láseres intensos de longitudes de onda en el infra-

rrojo medio [139], HHG se ha convertido en una herramienta potencial para producir

rayos X coherentes. Los avances en la comprensión del ajuste de fases macroscópico

[42, 149], han hecho posible generar armónicos de orden ultra-elevado, intensos y cohe-

rentes, de enerǵıas cercanas al kiloelectronvoltio, gracias a estos láseres en el infrarrojo

medio. Este logro ha sido llevado a cabo por una colaboración internacional liderada

por JILA (Universidad de Colorado), y en el que también participaron la Universidad

Técnica de Viena, la Universidad de Cornell y nuestro grupo [20]. Aunque la intensidad

de estos rayos X generados por HHG cae por debajo de las obtenidas con láseres de

electrones libres (XFEL), el grado de coherencia es superior y la fase espectral y la

forma del pulso son regulares y repetitivas. En este caṕıtulo nos centraremos en la

caracterización de la coherencia temporal de los rayos X obtenidos por HHG, primero

mediante la realización de simulaciones de un solo at́omo y, posteriormente, incluyendo

la propagación.

El cálculo teórico de HHG utilizando láseres en el infrarrojo medio resulta com-

plejo debido a la excursión del electrón una vez ionizado, que escala con el cuadrado

de la longitud de onda. Por ejemplo, usando láseres de 800 nm, la máxima excursión

clásica suele ser de 1 nm, mientras que con láseres de 4 µm, unos 40 nm. Este in-

cremento espacial, sumado al incremento temporal (pues el peŕıodo del láser también

aumenta) complica mucho los cálculos, de modo que resulta imprescindible utilizar

modelos aproximados. En nuestro caso, hemos utilizado el modelo SFA+ incluyendo

la aproximación del punto de silla (saddle-point) en el plano transversal.

El estudio que hemos realizado sobre el cálculo de HHG en un solo átomo median-

te láseres en el medio infrarrojo (3.9 µm) nos ha deparado varias sorpresas, como se

puede observar en la figura S7. Como vemos, el espectro contiene enerǵıas de hasta

1.6 keV, pero lo más interesante está en el carácter temporal de la radiación. A pesar

de tener un ancho de banda muy extenso (desde 0.2 a 1.6 keV), la radiación se genera

en pulsos de femtosegundo y no de attosegundo, debido al chirp intŕınseco al proceso
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HHG. Además, podemos observar una estructura fina (en el régimen de los attosegun-

dos) y regular, superpuesta en cada pulso de femtosegundo. Realizando un análisis

tiempo-frecuencia en el que se muestra la correlación del tiempo de emisión con cada

armónico generado, hemos identificado estas estructuras como una consecuencia de las

recolisiones de orden superior. En el proceso de HHG, un electrón ionizado tiene una

cierta probabilidad de recolisión. Si no recolisiona, la trayectoria clásica predice que

debido al carácter oscilante del campo, podrá recolisionar el pasar veces posteriores

por la posición del núcleo. La probabilidad de que ocurran estas recolisiones de or-

den superior se incrementa con la longitud de onda del láser [40, 156]. De esta forma,

la estructura de attosegundo en la figura S7 es consecuencia de la interferencia entre

distintos órdenes de recolisión.

Figura S7. Envolvente de los pulsos de rayos X (ĺınea azul) y su derivada de la fase

temporal (ĺınea roja), obtenidos mediante un láser de 3.9 µm, con intensidad pico 3.6×1014

W/cm2, y duración temporal de 2.9 ciclos (37 fs). El espectro de armónicos se presenta en

el recuerdo interior (ĺınea rosa).

El contraste de interferencia debido a los eventos de recolisión de orden superior en

HHG es suficientemente significativo para modular los pulsos de femtosegundo de rayos

X en una forma de onda de pulsos extremadamente cortos. Filtrando adecuadamente

las recolisiones de orden superior, demostramos que las formas de onda pueden alcanzar

el régimen de los zeptosegundo para láseres de longitud de onda por encima de 7.7 µm.

En la figura S8 podemos observar la estructura temporal obtenida en HHG con un

pulso de 9 µm y suficientemente corto (1.5 ciclos) para que sólo sean relevantes las
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recolisiones de primer y segundo orden. De esta forma, se consigue modular el segundo

pulso de femtosegundo en una onda en el régimen de los zeptosegundos.

Figura S8. a Representación esquemática del láser indicente (ĺınea gris), de 1.5 ciclos,

9µm e intensidad pico 3.4 × 1014 W/cm2. Se muestran las trayectorias que recolisionan

a primer y segundo orden, en el tiempo 94 fs. b Envolvente de los pulsos de rayos X

obtenidos En el recuadro interno izquierdo se muestra el espectro de armónicos, mientras

que en el derecho, el contenido espectral del segundo pulso, mostrando los picos de enerǵıa

debidos al primer y segundo orden de recolisión. En las gráficas c a e mostramos en detalle

la estructura temporal en el régimen de zeptosegundo del segundo pulso de rayos X.

Finalmente, hemos exprimido al máximo nuestro código para tener en cuenta los

efectos de propagación y de esta forma simular los resultados experimentales obtenidos

en la colaboración llevada a cabo por los grupos de Kapteyn y Murnane en JILA y

Baltuška en Viena. En la figura S9 mostramos los resultados experimentales y teóricos.

En primer lugar, el espectro simulado concuerda con el medido experimentalmente.

Además, nuestros cálculos predicen que los pulsos de rayos X se generan en la escala

de femtosegundo.
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Figura S9. a Espectro de armónicos experimental obtenido bajo condiciones de ajuste de

fases óptimo para láseres de longitudes de onda: 0.8 µm (amarillo), 1.3 µm (verde), 2 µm

(azul), y 3.9 µm (morado). b Espectro simulado, aśı como uno de los pulsos de rayos X

generados por un láser de 3.9 µm, 6 ciclos e intensidad pico 3.3×1014 W/cm2.

Como conclusión, en este caṕıtulo hemos demostrado que los pulsos de rayos X

obtenidos por generación de armónicos de orden ultra-elevado, exhiben coherencia tem-

poral. Estos pulsos de rayos X representan una herramienta prometedora para explorar

procesos f́ısicos ultrarrápidos.
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Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T.
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[23] A. Einstein, Über einen die Erzeugung und Verwand-

lung des Lichtes betreffenden heuristischen Gesichtspunkt.

Ann. Phys. 17, 132 (1905). English translation in A.

B. Arons and M. B. Peppard, Einstein’s Proposal of the

Photon Concept. Am. J. Phys. 33, 367 (1965). 3
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[30] M. Büttiker and R. Landauer, Traversal Time for Tun-

neling. Phys. Rev. Lett. 49, 1739 (1982). 4

[31] K. Rzazewski and L. Roso, Remark on the Keldysh Adi-

abaticity Parameter. Laser Phys. 3, 310 (1993). 4

[32] L. V. Keldysh, Ionization in the field of a strong electro-

magnetic wave. Sov. Phys. JETP 20, 1307 (1965). 5

[33] M. V. Amosov, N. B. Delone, and V. P. Krainov, Tunnel

ionization of complex atoms and of atomic ions in an al-

ternating electromagnetic field. Zh. Eksp. Teor. Fiz. 91,

2008 (1986). 5, 21, 43
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Paulus, H. Walther, R. Kopold, W. Becker, D. Milo-

sevic, A. Sanpera and M. Lewenstein, Feynman’s path-

integral approach for intense-laser-atom interactions Sci-

ence, 292, 902 (2001). 23, 82, 88

[72] M. B. Gaarde, F. Salin, E. Constant, Ph. Balcou, K. J.

Schafer, K. C. Kulander, and A. LHuillier, Spatiotempo-

ral separation of high harmonic radiation into two quan-

tum path components. Phys. Rev. A 59, 1367 (1999). 23

[73] M. Bellini, C. Lyng, A. Tozzi, M. B. Gaarde, T. Hänsch,
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[78] J. A. Pérez-Hernández, J. Ramos, L. Roso and L. Plaja,

Harmonic Generation Beyond the Strong-Field Approxi-

mation: Phase and Temporal Description. Laser Phys. 5,

1044-1050 (2010). 28, 32

[79] E. Clementi and C. Roetti, Roothan-Hartree-Fock

atomic wavefunctions. Atomic data and nuclear data ta-

bles 14, 177 (1974). 28, 90

[80] X. Tong and C. Lin, Empirical formula for static field

ionization rates of atoms and molecules by lasers in

the barrier-suppression regime. J. of Phys. B 38, 2593

(2005). 29, 92

[81] C. Granados, Master’s thesis: Estudio de la Generación

de Armónicos de Orden Elevado en la Aproximación de

ampo Fuerta Extendida (SFA+), (Universidad de Sala-

manca, 2011). 29

[82] A. L’Huillier, X. F. Li and L. A. Lompré, Propagation
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