Laboratorio de láseres intensos

1.- Datos de la Asignatura

Código	304335	Plan		ECTS	3	
Carácter	Optativa	Curso		Periodicidad	Semestre 2	
Área	Óptica					
Departamento	Física Aplicada					
Plataforma	Plataforma:	STUDIUM				
Virtual	URL de Acceso:	http://moodle2.usal.es				

Datos del profesorado

Profesor Coordinador	Íñigo Juan Sola Larrañag	Grupo / s	Todos	
Departamento	Física Aplicada			
Área	Óptica			
Centro	Facultad de Ciencias			
Despacho	Edificio Trilingüe, Área de Óptica (despacho T2312)			
Horario de tutorías	Previa cita online			
URL Web	https://laser.usal.es/alf/es/inicio/			
E-mail	ijsola@usal.es	Teléfono	923 294678 (E	xt. 1337)

Profesor Coordinador	Julio San Román Álvarez	de Lara	Grupo / s	Todos	
Departamento	Física Aplicada				
Área	Óptica				
Centro	Facultad de Ciencias				
Despacho	Edificio Trilingüe, Área de Óptica (despacho T2312)				
Horario de tutorías	Previa cita online.				
URL Web	https://laser.usal.es/alf/es/inicio/				
E-mail	jsr@usal.es	Teléfono	923 294678 (E	xt. 1337)	

Profesor Coordinador	Camilo Ruíz Méndez		Grupo / s	Todos	
Departamento	Didáctica de las matemáticas y ciencias experimentales				
Área	Didáctica de las Ciencias Experiemntales				
Centro	Facultad de Educación				
Despacho	Lab de Física y Quimica. Edif Europa.				
Horario de tutorías	Previa cita online				
URL Web					
E-mail	camilo@usal.es	Teléfono			

Profesor Coordinador	Ignacio López Quintás		Grupo / s	Todos	
Departamento	Física Aplicada				
Área	Óptica				
Centro	Facultad de Ciencias				
Despacho	Edificio Trilingüe, Área de Óptica (despacho T2313)				
Horario de tutorías	Previa cita online.				
URL Web	https://laser.usal.es/alf/es/inicio/				
E-mail	ilopezquintas@usal.es	Teléfono	923 294678 (E	xt. 1337)	

2.- Sentido de la materia en el plan de estudios

En esta asignatura los alumnos diseñan, preparan y realizan experimentos con pulsos ultracortos. La formación adquirida en todo el desarrollo de esta actividad hace que los alumnos que hayan cursado esta asignatura puedan incorporarse fácilmente a un laboratorio de óptica y, especialmente, a un laboratorio de láseres pulsados.

3.- Recomendaciones previas

Esta asignatura se coordinará con la asignatura del segundo semestre "Pulsos ultracortos". Se recomienda, además, haber superado las asignaturas "Instrumentación y técnicas de análisis del haz láser" y "Laboratorio de láseres" del primer semestre.

4.- Objetivos de la asignatura

Diseñar los montajes necesarios para realizar experimentos con láseres en el régimen de alta intensidad. Preparar los montajes experimentales diseñados, alinearlos y manipularlos adecuadamente. Recoger todos los datos relevantes de los experimentos para su posterior estudio. Discernir las implicaciones de los resultados, analizarlos con sentido crítico y emitir hipótesis plausibles sobre el proceso físico presente en los experimentos.

5.- Contenidos

BLOQUE I: Propagación no lineal de pulsos cortos

TEMA 1: Efectos espaciales en la propagación no lineal: autofocalización y el solitón de Townes.

TEMA 2: Efectos temporales en la propagación no lineal: ensanchamiento espectral.

TEMA 3: Técnicas de post-compresión basada en fibra hueca y en filamentación.

BLOQUE II: Interacción de pulsos cortos con materia

TEMA 1: Montajes pump & probe con pulsos ultracortos para hacer medidas resueltas en tiempo.

TEMA 2: Técnicas de diagnósticos enfoque y posición de blancos para experimentos láser plasma.

6.- Competencias a adquirir

Básicas/Generales.

- CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida auto-dirigido o autónomo.
- CG1. Familiarizarse con todos los aspectos que envuelve la investigación en el campo de la óptica y los láseres: trabajo teórico, de laboratorio, simulación numérica; consulta de revistas y bases de datos especializadas; exposición y publicación de resultados; proyectos de investigación, becas y contratos de formación.

Específicas.

- CE1. Conocer las bases físicas del funcionamiento de los dispositivos láser.
- CE2. Conocer los tipos de láseres más utilizados y sus aplicaciones.
- CE3. Familiarizarse con el mantenimiento de equipos láser y ser capaz de caracterizar haces láser espacial y temporalmente.
- CE4. Conocer las características de los láseres pulsados ultracortos y ultraintensos, y sus principales aplicaciones.

7.- Metodologías docentes

Clases prácticas

Toda esta asignatura se desarrolla por medio de clases prácticas. Se realizan clases

prácticas en el laboratorio, en las que se preparan y realizan los experimentos propuestos y clases prácticas en el aula de informática, en las que se realizan simulaciones de experimentos con láseres intensos y en los que se visualiza las fenomenologías presentes en los experimentos de laboratorio. Todas las clases, tanto las de laboratorio como las del aula de informática, comenzarán con una breve introducción y contextualización del experimento que se va a proponer.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de	HORAS
		Horas presenciales.	Horas no presenciales.	trabajo autónomo	TOTALES
Sesiones magistral	es				
	- En aula				
Prácticas	- En el laboratorio	20		45	65
	- En aula de informática	8		8	16
	- De campo				
	- De visualización (visu)				
Seminarios					
Exposiciones y deb	pates				
Tutorías		3			3
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		1		15	16
	TOTAL	32		68	100

9.- Recursos

Libros de consulta para el alumno

1. "Nonlinear Fiber Optics", G.P. Agrawal, Academic Press 2001

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

- 1. C. Ruiz et al Phys. Rev. Lett. 95, 053905 (2005)
- 2. C.P. Hauri et al Appl. Phys. B 79, 673 (2004)
- 3. A. Jullien et al Opt. Lett. 29, 2184 (2004)
- 4. M. Nisoli et al Opt. Lett. 22, 522 (1997)
- 5. "Super-Intense Laser-Atom Physics", Edited by B. Piraux, A. L'Huillier and K. Rzazewski, Plenum Press, New York and London, (1993)
- 6. Laser-Driven Sources of High Energy Particles and Radiation: Lecture Notes edited by Leonida Antonio Gizzi, Ralph Assmann, Petra Koester, Antonio Giulietti, Springer Nature, (2019)

10.- Evaluación

Consideraciones Generales

La adquisición de las competencias de esta asignatura se evaluará de manera continua.

Criterios de evaluación

Para la evaluación de esta asignatura se tendrá en cuenta la participación y el aprovechamiento de las prácticas (15% de la nota final), la entrega de informes de las prácticas de laboratorio (70%) y la entrega de ejercicios propuestos en las prácticas de simulación (15%).

Instrumentos de evaluación

Los instrumentos de evaluación que se van usar:

- 1.- La participación en las prácticas.
- 2.- El informe de las prácticas de laboratorio.
- 3.- Ejercicios de las prácticas de simulación.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas, siendo la asistencia a las prácticas de laboratorio obligatoria.

Recomendaciones para la recuperación.

En la recuperación se utilizarán los mismos instrumentos de evaluación anteriormente citados.