ALF results

High fashion jewelry in non-linear optics

Sterling silver jewelry, rose gold with exclusive designs, rings, earrings, bracelets… made out of light? Like a high fashion jewelry workshop, the Laser and Photonics Applications research group of the University of Salamanca (ALF-USAL) focuses its efforts on designing light jewels through non-linear optics. Jewels, not only for their beauty in the form of high-frequency lasers, but also for their usefulness in observing and controlling unknown processes in nature. In fact, the design of coherent and high-frequency laser light beams (towards the X-rays) has become a unique tool to access processes that take place in very small sizes (nanometers) and in very short times (trillionths of seconds).

The theoretical-experimental collaboration between ALF-USAL and the group of Profs. Murnane and Kapteyn at the University of Colorado at Boulder (USA) have been developing fine jewelry for the last few years. After generating high-frequency rings with properties never seen before (see references [1,2]), the researchers have gone a step further, entering the world of necklaces. The design of an infrared laser in the form of a necklace allows to control the frequency and divergence (or spatial size) of the X-rays that are produced after the non-linear process of high-order harmonic generation. In this work, published in the journal Science Advances, the researchers also demonstrate that the spectral content of these X-ray lasers can be calibrated by means of the number of beads in the necklace. One more step in the high fashion jewelry with lasers that tries to help in the understanding of the fastest processes of nature.

More information in:

“Necklace-structured high harmonic generation for low-divergence, soft X-ray harmonic combs with tunable line spacing”, Laura Rego, Nathan J. Brooks, Quynh L. D. Nguyen, Julio San Román, Iona Binnie, Luis Plaja, Henry C. Kapteyn, Margaret M. Murnane, Carlos Hernández-García, Science Advances 8, eabj7380 (2022).

References::

[1] “Generation of extreme-ultraviolet beams with time-varying orbital angular momentum”, Laura Rego, Kevin M Dorney, Nathan J Brooks, Quynh Nguyen, Chen-Ting Liao, Julio San Román, David E Couch, Allison Liu, Emilio Pisanty, Maciej Lewenstein, Luis Plaja, Henry C Kapteyn, Margaret M Murnane, Carlos Hernández-García,   Science 364, eaaw9486 (2019).

[2] “Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation”, Kevin M. Dorney, Laura Rego, Nathan J. Brooks, Julio San Román, Chen-Ting Liao, Jennifer L. Ellis, Dmitriy Zusin, Christian Gentry, Quynh L. Nguyen, Justin. M. Shaw, Antonio Picón, Luis Plaja, Henry C. Kapteyn, Margaret M. Murnane, Carlos Hernández-García, Nature Photonics 13, 123–130 (2019).

No comments
adminHigh fashion jewelry in non-linear optics

Jila Press Release – A Necklace Made of Doughnuts

Our friends and frequent collaborators from JILA (University of Colorado) echo the paper “Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs with tunable line spacing” recently published in ScienceAdvances.

You can read his review at the following link: https://jila.colorado.edu/news-events/articles/necklace-made-doughnuts

More information at:

Rego, L., Brooks, N. J., Nguyen, Q. L. D., San Roman, J., Binnie, I., Plaja, I., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2022). Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs with tunable line spacing. Science Advances, 8(5), eabj7380. https://doi.org/10.1126/sciadv.abj7380
No comments
adminJila Press Release – A Necklace Made of Doughnuts

Compressing light pulses in pressure gradients

In spite of having an extremely short life, of just a few quadrillionths of a second, ultrashort femtosecond laser pulses have become an indispensable tool in many areas of science and technology, as they allow to probe the most fundamental properties of matter on ultrafast time scales.

Generating these such short pulses of light in a controlled manner and with a good quality is not an easy task, and in the last years various strategies have been proposed. The main idea is to generate a very wide light spectrum, made up of many frequencies, by means of nonlinear processes starting from a narrower one, and then correcting its phase to synchronize all the frequencies, giving rise to an ultrashort pulse. A widely used method to achieve this large spectral broadening is to propagate an initial light pulse through a hollow cylindrical fiber filled with a gas. In this case, one of the parameters that most influences the propagation is the pressure of the filling gas, which allows for a continuous tuning of the dispersion and the intensity of the nonlinear effects experienced by the pulse. In particular, if the fiber and gas parameters are carefully chosen, the incident pulse can broaden its spectrum while correcting its phase due to the interaction between the linear and nonlinear processes. In this way, the pulse reduces its duration on its own, in a process known as soliton self-compression.

Usually, these experiments are carried out keeping the gas at constant pressure, homogeneously filling the fiber. However, in one of our latest studies we have shown that applying a decreasing pressure gradient, causing the gas concentration to gradually decrease during propagation, can improve the quality of the self-compressed pulses and reduce their duration even more than constant pressure.

You can look up for all the details of this work at:

F. Galán, E. C. Jarque, and J. San Roman, Optimization of pulse self-compression in hollow capillary fibers using decreasing pressure gradients, Optics Express 30(5), 6755–6767 (2022). https://doi.org/10.1364/OE.451264

Download the full paper at Gredos @Universidad de Salamanca: http://hdl.handle.net/10366/148576
 
No comments
adminCompressing light pulses in pressure gradients