Resultados ALF

Espectros Fantásticos y dónde encontrarlos

La generación de pulsos de luz ultracortos y con una buena estructura espacial es la piedra filosofal de la física de pulsos ultrarrápidos. Estos pulsos permiten estudiar y modificar las propiedades de la materia a escalas temporales inalcanzables por otros procedimientos.

En las últimas décadas se han hecho grandes avances en la generación de pulsos ultracortos de alta calidad. Las técnicas de post-compresión, aquellas destinadas a generar este tipo de pulsos, consisten en ensanchar el espectro de un pulso durante su propagación gracias a efectos no lineales y posteriormente corregir su fase para conseguir el pulso temporal más corto posible. La técnica de post-compresión más empleada en la actualidad es la basada en la propagación no lineal de un pulso por una fibra hueca rellena de gas. Sin embargo, en la última década, con el auge de nuevos láseres, como el láser de Yb, han ganado relevancia otros métodos de post-compresión que no tengan que lidiar con las restricciones que presentan las fibras huecas. Una de estas nuevas técnicas de post-compresión consiste en la propagación no lineal en celdas multipaso.

Estas celdas multipaso son cavidades formadas por dos espejos esféricos en las que el haz láser se introduce en ella desviado del eje de la cavidad, de tal manera que el haz se refleja múltiples veces formando un hiperboloide antes de salir de la celda. Una de las ventajas de estas cavidades es que podemos introducir en ellas un medio no lineal por el que el haz de luz se propaga de forma no lineal durante las sucesivas pasadas.

En este ámbito, hemos explorado teóricamente una región de post-compresión en celdas multipaso que permita generar espectros anchos y con perfil suave para evitar que el pulso una vez comprimido presente demasiada estructura (pre-pulsos o post-pulsos). Para ello, nos hemos apoyado en un régimen particular explorado ya en los años 80 conocido como régimen con chirp espectral acentuado (enhanced frequency chirp regime en inglés) y lo hemos adaptado a las celdas multipasoEn este régimen, los efectos no lineales y la dispersión van de la mano para ensanchar el espectro manteniendo una estructura suave que es compatible con un perfil temporal muy limpio. Hemos optimizado los parámetros de esta región para el caso de una cavidad multipaso rellena de argón obteniendo pulsos cuyo límite de Fourier se comprime más de 10 veces con respecto a la duración del pulso inicial, pero sobre todo manteniendo una estructura extremadamente limpia, lo que lo hace muy útil para diversas aplicaciones.

Más información en el articulo:  

Staels, V. W. Segundo, E. Conejero Jarque, D. Carlson, M. Hemmer, H. C. Kapteyn, M. M. Murnane, y J. San Roman. 2023. «Numerical investigation of gas-filled multipass cells in the enhanced dispersion regime for clean spectral broadening and pulse compression». Opt. Express 31(12):18898-906. doi: 10.1364/OE.481054.
No comments
adminEspectros Fantásticos y dónde encontrarlos

Microespectrómetro

El desarrollo de detectores ópticos cada vez más compactos y miniaturizados es esencial para su incorporación en diversos sectores, como por ejemplo el aeroespacial o en la medicina personalizada (organ-on-chip). El grupo de investigación ALF tiene una larga experiencia en la tecnología de microfabricación de elementos fotónicos por irradiación con pulsos láser ultracortos (femtosegundos). Esta tecnología permite la implementación de circuitos ópticos 3D embebidos en cualquier material dieléctrico transparente, y ha dado lugar al desarrollo de dispositivos eficientes ultracompactos como micro-láseres de guía de onda, biosensores o linternas fotónicas.

Recientemente, investigadores de ALF han trabajado conjuntamente con la Agencia Espacial Europea (ESA), el Centro Europeo de Investigación Espacial y Tecnología (ESTEC), el Instituto Federal Suizo de Tecnología (ETH-Zurich), los Laboratorios de Ciencia de Materiales y Tecnología suizos (EMPA), y la Universidad de Bassel, en el desarrollo de un espectrómetro miniaturizado ultracompacto. El dispositivo pertenece a la familia de espectrómetros “de transformada de Fourier”, y consta de un chip de LiNbO3 en el que se fabricó una guía de onda monomodal para el IR cercano, con un diseño optimizado para dirigir un pequeño flujo luminoso en la dirección vertical. En la parte superior del chip se coloca un nano-detector consistente en un nanohilo de oro perpendicular a la guía de onda, y una nanocapa de punto cuántico de HgTe. El hilo de oro actúa como elemento inductor de scattering o sonda de la luz confinada en la guía de onda, y la nanocapa crea una fotocorriente que es detectable. Para que el dispositivo funcione como espectrómetro, se coloca un espejo a la salida de la guía que crea una onda estacionaria en las proximidades del nanodetector. El desplazamiento de este espejo permite hacer un barrido de la onda confinada, obteniéndose la medida espacial de intensidad de la que se extrae el espectro por transformada de Fourier.

Esquema del dispositivo

Tras la fabricación, se ha demostrado su eficiente operación con resolución mejor que 50 cm-1 en el infrarrojo cercano. La parte activa del dispositivo tiene un volumen tan pequeño como 100 μm×100 μm×100 μm, por lo que podría integrarse en una nueva generación de satélites ultrapequeños.

Más información en: 

M. Grotevent et al., “Integrated photodetectors for compact Fourier-transform waveguide spectrometers” Nature Photonics 17, 59 (2023). https://doi.org/10.1038/s41566-022-01088-7

No comments
adminMicroespectrómetro

Puesta en marcha de la Red FASLIGHT

El Grupo de Investigación de Aplicaciones del Láser y Fotónica coordinará la Red de Investigación «Fundamentos y Aplicaciones de la Luz Estructurada» FASLIGTH (RED2022-134391-T)

Esta red ha surgido en el marco de la convocatoria «Redes de Investigación» en el marco del Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023. La actuación tendrá una duración de 2 años, desde junio de 2023 y ha recibido 20.300 € de financiación del Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación.

El objetivo de la red FASLIGHT es crear una red española de luz estructurada, uniendo grupos científicos con experiencia diversa en física fundamental y aplicada, pero con puntos comunes en el uso de luz estructurada. Para ello se pretende: 

  • Establecer un marco de colaboración más allá de las colaboraciones bilaterales ya existentes bajo el paraguas de la luz estructurada, en el que grupos de investigación de diversos campos de especialización puedan compartir su trabajo, discutir ideas novedosas y promover nuevas colaboraciones.
  • Activar nuevas colaboraciones entre grupos españoles que hagan uso de la luz estructurada y explorar potenciales colaboraciones entre campos de investigación lejanos.
  • Potenciar la visibilidad internacional de los grupos españoles que trabajan en el marco de la luz estructurada.
  • Motivar futuras propuestas de proyectos, incluyendo fondos europeos como Marie Curie ITN, PATHFINDER, etc, y fondos nacionales y regionales.
  • Fomentar el uso de la luz estructurada como tecnología transformadora clave en España.

La red FASLIGHT esta formada por los siguientes 15 nodos:

  1. Grupo de Aplicaciones del Láser y Fotónica, representado por Luis Plaja Rustein, de la Universidad de Salamanca (USAL).
  2. Estructuras fotónicas no lineales, representado por Albert Ferrando, de la Universitat de València (UV).
  3. Engineering physics group, representado por Ángel Paredes, de la Universidad de Vigo (UVigo).
  4. Attosecond and ultrafast x-ray optics (AUXO), representado por Antonio Picón, de la Universidad Autónoma de Madrid (AUM)
  5. Grupo de Fotónica Aplicada / Applied Photonics Group, representado por David Novoa de la Universidad del País Vasco (UPV/EHU).
  6. Grupo de Investigación de Óptica (GROC-UJI), representado por Enrique Tajahuerce, de la Universitat Jaume I (UJI).
  7. Grupo de investigación en luz estructurada de la Universidad de Zaragoza, representado por Francisco Javier Salgado Remacha, de la Universidad de Zaragoza (UZ)
  8. Quantum Nanophotonics Laboratory, representado por Gabriel Molina Terriza, del Materials Physics Center.
  9. Grupo de Tecnología Óptica y Optoelectrónica – TecnOpto-UMH, representado por Ignacio Moreno, de la Universidad Miguel Hernández de Elche (UMH)
  10. Grupo de luz estructurada UCM: Control espacial/temporal de haces láser continuo/pulsado y sus aplicaciones, representado por Jose A. Rodrigo Martín-Romo, de la Universidad Complutense de Madrid (UCM)
  11. Laboratorio de Óptica (LOUM), representado por Juan Manuel Bueno, de la Universidad de Murcia (UMU).
  12. Grupo Photonics4Life, representado por María Teresa Flores Arias, de la Universidade de Santiago de Compostela (USC).
  13. Grupo Theory for Quantum Technologies Group (TQT group), representado por  Miguel Ángel García March de la Universitat Politécnica de València (UPV)
  14. Grupo de Sistemas Complejos (GSC), representado por Miguel Ángel Porras, de la  Universidad Politécnica de Madrid (UPM)
  15. Grupo Quantum Atom Optics (QAOS), representado por Verònica Ahufinger, de la Universitat Autònoma de Barcelona (UAB).
No comments
adminPuesta en marcha de la Red FASLIGHT

Anuncio de defensa de Tesis Doctoral – Javier Prada Rodrigo

El 8 de junio, Javier Prada Rodrigo presentará su tesis doctoral titulada «Formation and characterization of surface micro- and nanostructures in polymers and polymeric nanocomposites prepared by irradiation with pulsed nano- and femtosecond lasers / Formación y caracterización de micro- y nanoestructuras superficiales en polímeros y nanocompuestos poliméricos preparadas mediante irradiación con láseres pulsados de nano- y femtosegundos» y dirigida por los doctores D. Pablo Moreno Pedraz y Dª. Esther Rebollar González
 

El acto de defensa tendrá lugar a las 11:30 h en el aula Francisco de Vitoria del Edificio de Escuelas Mayores

No comments
adminAnuncio de defensa de Tesis Doctoral – Javier Prada Rodrigo

Láser y polímeros y compuestos nanoestructurados: influencia de las propiedades y parametros

Se estudia la formación de nanoestructuras superficiales periódicas inducidas por láser (LIPSS) usando pulsos láser de fs en el infrarrojo cercano sobre películas delgadas de poli(tereftalato de etileno) (PET) depositadas sobre sustrato de oro. Asimismo, se estudia la influencia de la rugosidad del sustrato de oro y el espesor de la película de PET en la formación de LIPSS y se analiza mediante simulaciones por ordenador usando COMSOLTM en términos de las características de la distribución del campo eléctrico. Obtenemos LIPSS con períodos cercanos a la longitud de onda de irradiación, siempre y cuando los parámetros geométricos del sustrato y de la película se mantienen por debajo de unos valores umbral, en particular para el espesor de polímero, que debe ser inferior a 200 nm y la rugosidad del sustrato que debe estar en el rango de pocos nm. Nuestros experimentos demuestran la imposibilidad de formación de LIPSS para sustratos rugosos, así como películas con espesores por encima de estos valores umbral. En nuestras simulaciones numéricas, demostramos la generación de Plasmones Polaritones Superficiales (SPP) en la interfaz película-sustrato, lo que da lugar a un patrón de campo eléctrico periódico en la superficie de la película delgada. Esta periodicidad se rompe para un cierto nivel de rugosidad del sustrato o espesor de la película. Además, la evolución del período del SPP cuando se modifican la rugosidad del sustrato y la película cambia de espesor modificando determinados parámetros láser está cualitativamente de acuerdo con los resultados experimentales. En conclusión, los resultados experimentales se pueden explicar por la formación y comportamiento de los SPP en la interfaz película-sustrato. Nuestra conclusión es que la formación de SPP y el posterior aumento inhomogéneo de la temperatura inducido por el campo periódico en la superficie de la muestra es el mecanismo principal que contribuye a la formación de LIPSS.

Más informácion en el articulo:

Prada-Rodrigo, J., Rodríguez-Beltrán, R. I., Ezquerra, T. A., Moreno, P., & Rebollar, E. (2023). Influence of film thickness and substrate roughness on the formation of laser induced periodic surface structures in poly(ethylene terephthalate) films deposited over gold substrates. Optics & Laser Technology, 159, 109007. https://doi.org/10.1016/j.optlastec.2022.109007
No comments
adminLáser y polímeros y compuestos nanoestructurados: influencia de las propiedades y parametros

Anuncio de defensa de Tesis Doctoral – Miguel López Ripa

El 26 de mayo, Miguel López Ripa presentará su tesis doctoral titulada «Development of ultra-stable characterization techniques for ultrashort laser beams / Desarrollo de técnicas ultraestables para la caracterización de haces láser ultracortos» y dirigida por los doctores D. Íñigo Juan Sola Larrañaga y D. Benjamín Alonso Fernández
 

El acto de defensa tendrá lugar a las 10:30 h en el aula Francisco de Vitoria del Edificio de Escuelas Mayores

No comments
adminAnuncio de defensa de Tesis Doctoral – Miguel López Ripa

Uso de pulsos láser ultracortos como estándar para ensayos de resistencia a fractura

El empleo de la mecánica de fractura para explicar el comportamiento a fractura de carburos cementados es válido, en tanto en cuanto se estudien fisuras agudas, libres de tensiones residuales y sometidas a un estado de tensión bien definido. Sin embargo, el mecanizado de una fisura muy aguda en la superficie de los metales duros para realizar tests de resistencia a la fractura ha sido siempre un problema crítico. En este artículo, se propone, implementa y analiza la introducción de microfisuras en superficie a lo largo del espesor de las probetas (SEμVNB) mediante ablación láser con pulsos ultracortos (UPLA) como alternativa para la realización de ensayos de flexión para la evaluación adecuada de la resistencia a la fractura de carburos cementados. Los parámetros de UPLA utilizados para realizar las microfisuras se optimizan en términos de daño inducido en la región situada más allá de la punta de la fisura. Con fines comparativos, la resistencia a la fractura se determina también mediante ensayos de flexión de probetas previamente fisuradas (SENB-Cracked), así como probetas con fisuras con puntas en V obtenidas mediante pulido con polvo de diamante y una cuchilla de afeitar, y utilizando el método de indentación Palmqvist. La similitud de los valores obtenidos para las diferentes técnicas mencionadas permite concluir que los ensayos de flexión de probetas SEμVNB constituyen una técnica válida para la determinación fiable de la resistencia a la fractura de metales duros. El tiempo extremadamente corto de interacción láser-materia produce un nivel limitado y controlado de daño termomecánico más allá de la punta de la fisura, atribuible a la propagación de ondas de choque durante la ablación, lo que se traduce en una preparación eficiente de probetas SEμVNB para este tipo de ensayos.

Más información en el artículo:  

Ortiz-Membrado, L., Liu, C., Prada-Rodrigo, J., Jiménez-Piqué, E., Lin, L. L., Moreno, P., Wang, M. S., & Llanes, L. (2022). Assessment of fracture toughness of cemented carbides by using a shallow notch produced by ultrashort pulsed laser ablation, and a comparative study with tests employing precracked specimens. International Journal of Refractory Metals and Hard Materials, 108, 105949. https://doi.org/10.1016/j.ijrmhm.2022.105949

 

No comments
adminUso de pulsos láser ultracortos como estándar para ensayos de resistencia a fractura

Investigadores de ALF-USAL participan en la reunión anual de la Sociedad Europea de Óptica (EOSAM 2022)

Del 12 al 16 de septiembre se ha celebrado, en Oporto (Portugal) la reunión anual de la Sociedad Europea de Óptica (EOSAM 2022). El grupo de Aplicaciones del Láser y Fotónica (ALF – USAL) ha participado en este congreso presentando algunos de los resultados más recientes de las investigaciones que lleva a cabo actualmente. 

Los trabajos presentados fueron: 

  • Marina Fernández Galán, Enrique Conejero Jarque, Julio San Román. Pulse self-compression down to the sub-cycle regime in hollow capillary fibers with decreasing pressure gradients. TOM 8 Non-linear and Quantum Optics – Contribución oral (Abstract).
  • Miguel López Ripa, Iñigo J. Sola, Benjamín Alonso. Ultraestable spatiotemporal characterization of optical vortices in the visible and near infrared. TOM 13 Advances And Applications of Optics and Photonics – Contribución oral (Abstract). 
  • Rodrigo Martín Hernández, Luis Plaja, Carlos Hernández García. Fourier-limited attosecond pulse generation with magnetically pumped high-order harmonic generation. TOM 8 Non-linear and Quantum Optics – Contribución oral (Abstract)
  • Luis Plaja, Ana García Cabrera, Roberto Boyero-García, Óscar Zurrón, Julio San Román, Carlos Hernández García. Multi-beam vortex generation induced by the non-linear optical anisotropy of graphene. TOM 8 Non-linear and Quantum Optics – Póster (Abstract)
  • Victor W. Segundo Staels, Enrique Conejero Jarque, Daniel Carlson, Michaël Hemmer, Henry C. Kapteyn, Margaret M. Murnane, Julio San Román. Supercontinuum generation in the enhanced frequency chirp regime in multipass cells. TOM 8 Non-linear and Quantum Optics – Contribución oral (Abstract)
  • Carlos Hernández García. Novel ultrafast structured EUV/x-ray sources from nonlinear optics. TOM 13 Advances And Applications of Optics and Photonics – Contribución oral (Abstract). 
No comments
adminInvestigadores de ALF-USAL participan en la reunión anual de la Sociedad Europea de Óptica (EOSAM 2022)

No todo iba a ser perfecto 

En la actualidad, el proceso de generación de armónicos es una herramienta extensamente utilizada para el estudio de dinámicas del orden de femtosegundo, sin embargo, aún existen muchas dudas acerca del comportamiento de los electrones dependiendo del medio material que se esté utilizando.
 
Recientes estudios en medios sólidos han revelado nuevos escenarios con dinámicas electrónicas extraordinarias comparadas con las de átomos o moléculas. El proceso en sólidos se puede explicar desde un punto de vista semiclásico a través de las trayectorias de los electrones desde que son excitados por el pulso láser hasta que vuelven a recombinar con su hueco, recolisión perfecta. Sin embargo, recientemente se ha reportado que parte de la emisión de armónicos altos vienen de situaciones donde las trayectorias del electrón y su hueco no se cruzan en el espacio real, dando pie a las conocidas recolisiones imperfectas. 
 
En este trabajo, demostramos la existencia de dichas recolisiones cuando el medio es una lámina de grafeno e incide sobre ella un pulso de láser linealmente polarizado. El grafeno, a diferencia de otros medios, presenta una estructura de bandas singular con puntos donde la capa de valencia y la de conducción están en contacto. Nuestro estudio tiene gran relevancia ya que hasta ahora sólo se había estudiado este fenómeno en sólidos de gap finito y con grandes curvaturas de Berry, o utilizando campos incidentes con polarización elíptica. Creemos que, con este trabajo damos un paso más hacía el entendimiento completo de las dinámicas ultrarápidas que se dan en sistemas sólidos irradiados por pulsos láser intensos.
 

Más información en:.

Boyero-García, Roberto, Ana García-Cabrera, Oscar Zurrón-Cifuentes, Carlos Hernández-García, y Luis Plaja. «Non-classical high harmonic generation in graphene driven by linearly-polarized laser pulses». Opt. Express 30, n.o 9 (abril de 2022): 15546-55. https://doi.org/10.1364/OE.452201.
No comments
adminNo todo iba a ser perfecto 

Reunión en Salamanca del comité científico asesor del proyecto ATTOSTRUCTURA

El próximo mes de agosto se cumplen treinta meses desde que se inició el proyecto ATTOSTRUCTURA, lo que significa que ya ha transcurrido la mitad de su duración.

Por esta razón, se ha celebrado la primera reunión de comité científico asesor del proyecto. El comité, formado por investigadores externos expertos en los diferentes campos del proyecto, tiene como objetivo evaluar el desarrollo del proyecto, los resultados obtenidos hasta la fecha y, si es necesario, proponer cambios o modificaciones en las líneas de investigación. De esta forma, se pretende asegurar que el proyecto alcanza los mejores resultados posibles manteniendo el mayor nivel de excelencia.

Los miembros del comité científico asesor son:

  • Prof. Jon Marangos (presidente) –  Imperial College (Londres, Reino Unido)
  • Dra. Alicia Palacios – Universidad Autónoma de Madrid (Madrid, España)
  • Prof. Misha Ivanov – Instituto Max Born de Óptica No Lineal y Espectroscopía de Pulso Corto en la Asociación de Investigación de Berlín (Berlin, Alemania)
  • Catedrático Jamal Berakdar – Instituto de Física, Universidad Martin-Luther (Halle – Wittenberg, Alemania)

La reunión, que tuvo lugar el viernes 22 de julio en la Sala de Juntas de la Facultad de Ciencias, comenzó con una sesión de puertas abiertas en la que se presentó el estado del proyecto y los principales resultados obtenidos hasta el momento. Los videos de esas sesiones estarán disponibles en la web del proyecto.

Con motivo de la reunion, Carlos Hernández García (investigador principal del proyecto) habla en este video grabado por los servicios audiovisuales de la Universidad de Salamanca, del proyecto, sus objetivos y los resultados obtenidos.

No comments
adminReunión en Salamanca del comité científico asesor del proyecto ATTOSTRUCTURA